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Introduction: Urinary tract infections are a common diagnostic challenge. Although urine culture remains the gold standard, it is time-consuming 
and often ordered reflexively. This study aimed to develop and validate an interpretable machine-learning–based Laboratory Decision-Support 
System (LDSS) to guide reflective urine culture prioritization using only structured laboratory data.

Materials and Methods: We analyzed a retrospective cohort of 51,923 adult patients. Seven machine learning algorithms were trained, with the 
Random Forest (RF) model demonstrating the highest accuracy. SHapley Additive exPlanations was employed to ensure model interpretability. A 
reduced RF model, using the top 10 predictive features, was used to construct three scoring systems: one emphasizing model fidelity, one optimizing 
diagnostic balance, and one maximizing sensitivity.

Results: The RF model demonstrated excellent performance (external receiver operating characteristic – area under the curve [ROC-AUC]: 0.956). The 
simplified 10-variable model maintained high accuracy (ROC-AUC: 0.947). Key predictors included bacterial count, leukocyte count, nitrite presence, 
and patient age. The scoring systems offered flexible options tailored to different diagnostic priorities, with the SAFE-Score achieving 95.3% sensitivity.

Conclusion: The developed LDSS supports rational antibiotic use by reducing unnecessary culture testing. Its explainable structure facilitates 
collaboration between laboratory professionals and clinicians, contributing to standardized reflective testing workflows and interdisciplinary decision-
making and strengthens antimicrobial stewardship, while preserving the central role of urine culture in infection management.
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Giriş: İdrar yolu enfeksiyonları sık karşılaşılan bir tanı sorunudur. Altın standart olan idrar kültürü, hem zaman alıcıdır hem de çoğu zaman gereksiz 
yere istenir. Bu çalışmada, yalnızca yapılandırılmış laboratuvar verilerini kullanarak reflektif idrar kültürü istemine rehberlik edecek, yorumlanabilir 
bir makine öğrenimi (ML) tabanlı Laboratuvar Karar Destek Sistemi (LKDS) geliştirilmesi ve doğrulanması amaçlandı.

Gereç ve Yöntem: Retrospektif olarak 51.923 erişkin hastaya ait veriler incelendi. Yedi ML algoritması eğitildi; en yüksek doğruluk Rastgele Orman 
(Random Forest, RF) modelinde elde edildi. Model şeffaflığı için SHapley Additive exPlanations kullanıldı. En iyi 10 özellikten oluşan sadeleştirilmiş 
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Introduction

Urinary tract infections (UTIs) are among the most common 
infections in clinical practice, with an estimated global 
incidence exceeding 150 million cases annually[1]. They 
are associated with substantial healthcare costs, frequent 
antibiotic prescriptions, and increased diagnostic burden, 
particularly in outpatient and emergency settings[2,3]. Accurate 
diagnosis remains challenging due to nonspecific symptoms 
and reliance on time-consuming laboratory tests[4].

Urine culture is considered the gold standard for UTI diagnosis. 
However, its 24–48-hour turnaround often necessitates empiric 
antibiotic treatment before microbiological confirmation[5]. 
This practice contributes to antimicrobial resistance, now 
recognized by the World Health Organization as a global 
health threat[6]. Moreover, up to 60%–70% of urine cultures 
yield negative or clinically insignificant results, highlighting 
potential overuse of testing and therapy[7].

Rapid dipstick tests, detecting leukocyte esterase and nitrite, 
provide immediate screening but show variable performance 
across populations, with sensitivity and specificity ranging 
from 68% to 88% and 17% to 98%, respectively[8].

This diagnostic uncertainty has prompted efforts to improve 
laboratory decision-making, including the use of reflective 
testing. Reflective testing, increasingly recognized in modern 
laboratory medicine, involves laboratory physicians adding 
further analyses or interpretative comments after reviewing 
initial test results to enhance diagnostic reasoning[9]. In 
UTIs, this expert-led approach aids accurate interpretation 
and encourages more judicious use of microbiological 
testing. Laboratory physicians thus face the dual challenge 
of minimizing unnecessary culture requests while ensuring 
patients with a high likelihood of positive cultures are correctly 
identified.

In most laboratory information systems (LIS), detailed symptom 
information is not captured; only test orders and preliminary 

diagnoses, such as International Classification of Diseases (ICD) 
codes, are typically available. Consequently, the predictive 
modeling approach in this study relied solely on structured 
laboratory data. To address this, we developed a standardized, 
interpretable, and data-driven Laboratory Decision-Support 
System (LDSS) to optimize urine culture utilization using 
routine laboratory parameters. The LDSS is not intended to 
replace clinical diagnoses but to assist laboratory physicians 
in prioritizing reflex urine culture testing within laboratory 
workflows. Diagnostic responsibility remains entirely with 
the treating clinician, while the LDSS provides reproducible, 
standardized insights derived from LIS data.

Artificial intelligence (AI) and machine learning (ML) have 
gained increasing attention for developing predictive models 
in UTI diagnosis. Various algorithms—including Logistic 
Regression (LR), Random Forests (RFs), Extreme Gradient 
Boosting (XGBoost), Light Gradient Boosting Machine 
(LightGBM), and TabNet—have demonstrated robust 
performance using structured data such as urinalysis results, 
demographics, and clinical history[10–12]. Reported area under 
the receiver operating characteristic curve (AUROC) values 
commonly exceed 0.85, with some studies achieving 0.95 or 
higher in external validation cohorts[11,13].

Recent studies have highlighted the importance of model 
interpretability. By employing SHapley Additive exPlanations 
(SHAP), our LDSS not only ensures transparency but also 
facilitates clinical integration by illustrating the real-time 
contribution of each variable. Real-world implementations 
of ML-based LDSSs have shown reductions in unnecessary 
culture orders, accelerated treatment decisions, and improved 
antibiotic stewardship outcomes[12,14].

Despite these advances, challenges remain. Many predictive 
models are trained on single-center datasets and lack external 
validation, raising concerns about generalizability across 
institutions and diverse patient populations[13,15]. Additionally, 
variability in urinalysis platforms and clinical practice patterns 
may limit reproducibility and scalability.

RF modeliyle üç farklı puanlama sistemi geliştirildi: Model doğruluğuna öncelik veren, tanısal dengeyi optimize eden ve hassasiyeti en üst düzeye 
çıkaran modeller.

Bulgular: RF modeli mükemmel performans gösterdi (harici testler – alıcı işletim karakteristiği eğrisi altında kalan alan [ROC-AUC]: 0,956). 
Basitleştirilmiş 10 değişkenli model yüksek doğruluğu korumuştur (ROC-AUC: 0,947). Temel öngörücüler arasında bakteri sayısı, lökositler, nitrit ve 
yaş yer almıştır. Skorlama sistemleri, farklı tanı hedeflerine göre uyarlanmış esnek seçenekler sunmuş ve SAFE-Skoru %95,3 hassasiyete ulaşmıştır.

Sonuç: Geliştirilen LKDS, gereksiz kültür sayısını azaltarak rasyonel antibiyotik kullanımını desteklemektedir. Açıklanabilir yapısı, laboratuvar 
profesyonelleriyle klinisyenler arasındaki iş birliğini kolaylaştırarak standartlaştırılmış reflektif test süreçlerine ve disiplinler arası karar vermeye katkı 
sağlar.

Anahtar Kelimeler: İdrar yolu enfeksiyonları, makine öğrenimi, idrar kültürü

Öz
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Unlike existing tools, the proposed LDSS provides three distinct 
scoring systems tailored to different clinical priorities, ranging 
from high-sensitivity triage to specificity-focused decision-
making. This flexibility promotes collaboration among 
biochemists, microbiologists, and clinicians while reducing 
diagnostic waste by minimizing unnecessary urine culture 
requests.

The aim of this study was to develop and externally validate 
a robust, interpretable ML-based LDSS to predict urine culture 
outcomes in patients with suspected UTIs. By standardizing 
reflective testing practices, the LDSS supports interdisciplinary 
decision-making, optimizes resource utilization, and ultimately 
contributes to rational antibiotic prescribing across healthcare 
settings.

Materials and Methods

Study Population/Subjects

This study was conducted at İzmir Tepecik Training and 
Research Hospital. Ethical approval was obtained from the 
University of Health Sciences Türkiye, İzmir Tepecik Training 
and Research Hospital Non-Interventional Research Ethics 
Committee prior to study initiation (approval number: 
2025/02-05, dated: 10.03.2025).

Eligible participants were adults aged ≥18 years who presented 
as inpatients or outpatients to the main hospital between 
January 1, 2014, and December 31, 2024, or to its affiliated 
hospital between January 1 and February 28, 2025. Inclusion 
criteria required patients to undergo their first urinalysis, 
complete blood count (CBC), and urine culture, ordered by a 
specialist physician based on clinical indication.

The study cohort included both culture-positive and culture-
negative cases, capturing the full spectrum of patients for 
whom urine cultures were clinically indicated. Consequently, 
the dataset reflects real-world test-ordering practices rather 
than a biased subset of confirmed infections.

Patients were excluded if they had incomplete test results, 
missing sub-parameters, non-bacterial pathogens in their 
urine culture, delays exceeding one hour between urine 
sample collection and laboratory registration, delays exceeding 
30 minutes for hemogram samples between phlebotomy and 
laboratory receipt, or a history of antibiotic treatment prior to 
testing.

CBC analyses were performed using UniCell DxH 800 analyzers 
(Beckman Coulter, Miami, FL, USA) from 2014 to 2020 and XN-
2000 systems (Sysmex Corporation, Kobe, Japan) from 2020 
onward. Urinalysis tests were conducted using fully automated 
analyzers across three periods: H-800 and FUS-200 systems 
(Dirui Industrial Co., Changchun, China) from 2014 to 2018; BT 

Uricell 1280–1600 (Bilimsel Products, İzmir, Türkiye) from 2018 
to 2021; and U2610–U1600 (Zybio Corporation, Chongqing, 
China) from 2021 onward.

Midstream urine samples were collected in sterile containers 
simultaneously with urinalysis and processed according 
to standard microbiological procedures. Samples without 
detectable bacterial growth after 24 hours were incubated for 
an additional 24 hours; if no growth was observed, the result 
was reported as “no growth”.

Reagents and calibrators for urinalysis were obtained from 
authorized manufacturers and were certified and registered 
products. Quality control materials were sourced from Bio-
Rad (California, USA). All results were reviewed and validated 
for accuracy and reliability by both a clinical biochemistry 
specialist and a clinical microbiology specialist.

Study Design

Patient identifiers were anonymized, and a dataset comprising 
age, sex, hemogram, urinalysis, and urine culture results from 
55,385 patients (main hospital: 52,854; affiliated hospital: 
2,531) was imported into Microsoft Excel 2021 (USA).

Symptom data were not included, as such information is not 
routinely recorded in LIS. In standard laboratory workflows, 
test orders are typically accompanied by preliminary diagnoses 
or ICD codes from the requesting physician, but detailed 
patient symptoms are not captured. Accordingly, the predictive 
model in this study was developed exclusively on structured 
laboratory data, aiming to forecast urine culture outcomes 
rather than to establish a clinical diagnosis of UTI.

After applying exclusion criteria, the final dataset included 
49,720 patients, with an external validation cohort of 2,203 
patients. The dataset was subsequently transferred to Python 
(version 3.13.1, USA) for ML analysis.

Following data cleaning, the main dataset was divided into 
training, internal test, and external test subsets using a 
60:20:20 stratified sampling strategy based on the binary 
target variable, ensuring preservation of class distribution.

Patient flow throughout the study is depicted in Figure 1, 
in accordance with the Standards for Reporting Diagnostic 
Accuracy guidelines.

Data Preprocessing and Training of ML Algorithms

Patient data were initially exported from the LIS into Microsoft 
Excel. Hemogram values and flow cytometry parameters from 
urinalysis were used directly due to device standardization. 
Semi-quantitative dipstick results—reported by urinalysis 
analyzers as categorical values (e.g., “+,” “++,” “+/-,” “trace”)—
were converted into numerical equivalents (e.g., “++” mapped 
to 2; “trace” standardized to 0.5) to ensure quantitative 
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consistency. Variables describing urine color and appearance 
were also recategorized by grouping similar classifications (e.g., 
light yellow to dark red; clear to very cloudy) to standardize the 
dataset.

Urine culture results were binarized as follows: samples with 
≥10,000 colony-forming unit (CFU)/mL bacterial growth were 
defined as positive (label = 1), while samples with <10,000 
CFU/mL, mixed flora, colonization, yeast, or no growth were 
classified as negative (label = 0).

The 10,000 CFU/mL threshold was selected based on recent 
evidence and the 2024 European Association of Urology 
guidelines, which acknowledge that lower colony counts 
(≥10³–104 CFU/mL) may be clinically significant in symptomatic 
or catheterized patients[16].  Nelson et al.[17] demonstrated 
that these lower thresholds preserve diagnostic accuracy for 
symptomatic UTIs, supporting their use in reflective testing 
workflows. Additionally, Werneburg et al.[18] showed that 
urinalysis parameters reliably predict the absence of infection 
at this threshold, reinforcing its clinical validity. This definition 
also aligns with our institutional microbiology reporting 
standard for significant bacteriuria.

Yeast and colonization findings were labeled as negative 
(label = 0) based on established microbiological evidence 
and laboratory reporting standards. In urinary cultures, the 
presence of Candida species typically reflects colonization 
or contamination rather than true infection, even at colony 
counts exceeding 104–105 CFU/mL, unless accompanied by 

compatible clinical symptoms[19]. Classifying yeast as negative 
prevented false-positive propagation in the LDSS and improved 
the model’s clinical specificity.

Similarly, cases labeled as “colonization”—including cultures 
with mixed flora or non-uropathogenic organisms—were 
considered negative. This approach aligns with standard 
microbiology practice, where such findings are reported as 
clinically non-significant. Although CLSI M100 (2025) does 
not define colony-count thresholds for colonization or 
candiduria, its terminology guided our categorization strategy. 
This interpretation reflects real-world laboratory workflows, 
ensuring that the LDSS mirrors standardized reporting logic 
and remains generalizable across institutions[20].

The cleaned dataset was transferred to Python for ML analysis. 
To enhance model robustness and address class imbalance, 
a stratified data partitioning scheme was applied, allocating 
60% of samples to training and 20% each to internal and 
external testing. The dataset exhibited natural imbalance, with 
22.4% culture-positive and 77.6% culture-negative samples. 
To mitigate majority-class bias, feature standardization and 
rebalancing strategies (class_weight=’balanced’) were applied 
uniformly across all classifiers.

As a preliminary check, a baseline LR model was trained 
and evaluated across all data splits. Receiver operating 
characteristic – area under the curve (ROC-AUC) scores (≈0.74, 
0.73, 0.73 for training, internal, and external sets, respectively) 
and F1 scores (0.55, 0.54, 0.54) demonstrated consistent 

Figure 1. Standards for Reporting Diagnostic Accuracy flow diagram of study participants and urine culture testing.
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generalization without evidence of overfitting or imbalance-
driven inflation. The close alignment of these baseline metrics 
confirmed that stratified sampling preserved class proportions 
across all subsets (≈22.4% positive vs. 77.6% negative), ensuring 
reliable model development.

ML Model Selection and Development

The results confirmed that the methodological setup—
including stratified sampling and proportional weighting—
effectively mitigated class imbalance and provided a reliable 
foundation for model development. LR was used not as a 
primary model, but as a diagnostic tool to verify dataset 
integrity and the fairness of the training process[21].

Model development was performed in Python 3.13.1 using 
widely adopted libraries and workflows. Seven ML algorithms 
were evaluated for their suitability with the dataset and their 
potential effectiveness in predicting urine culture outcomes: 
RF, XGBoost, LightGBM, CatBoost, LR, Artificial Neural Network 
(ANN), and K-Nearest Neighbors (KNN).

Variables included in the analysis:

•	 Demographic: Age, sex

•	 Hemogram: White blood cell, neutrophil, lymphocyte, 
monocyte, eosinophil, basophil, hemoglobin (HGB)

•	Urine Dipstick: Leukocyte esterase, nitrite, glucose, protein, 
pH, erythrocyte, bilirubin, urobilinogen, ketone

•	Other Urinalysis: Urine color, urine density, appearance

•	Flow Cytometry: Bacteria count, cylinder, yeast, urine 
leukocyte count

Data preprocessing, model training, evaluation, and 
visualization were conducted using open-source Python 
libraries:

•	 Data Processing and Analysis: pandas (v2.2.2), numpy 
(v2.0.2), optuna (v4.3.0)

•	 ML Model Development: scikit-learn (v1.6.1), XGBoost 
(v2.1.4), lightgbm (v4.5.0), catboost (v1.2.8), tensorflow (v2.10), 
keras (v2.10), torch (v2.6.0 + cu124)

•	Model Evaluation and Visualization: matplotlib (v3.10), 
seaborn (v0.13.2), scipy.stats (v1.9), sklearn.metrics (v1.2), SHAP 
(v0.47)

Detailed hyperparameter optimization procedures, including 
search strategies and parameter configurations for each model, 
are provided in the Supplementary Table 1. Each model was 
retrained using the optimal hyperparameters identified during 
tuning. Final model evaluation was based on F1 and ROC-AUC 
scores derived from the internal test set.

Performance Evaluation

Performance evaluation was conducted using standard 
Python-based data science libraries. The modeling process was 
assessed comprehensively through internal cross-validation, 
hyperparameter tuning, and multiple performance metrics.

Classification Performance Metrics: Model discrimination and 
predictive capability were evaluated using:

• AUC-ROC

• Area under the precision-recall curve (AUC-PR)

• Sensitivity and Specificity

• Positive predictive value (PPV) and negative predictive value 
(NPV)

• Positive likelihood ratio (PLR) and negative likelihood ratio 
(NLR)

• F1 score

Model Interpretability Metrics: To enhance clinical transparency 
and foster trust in algorithmic decisions, interpretability was 
assessed using:

• Feature-Importance metrics

• SHAP graphs

This multidimensional evaluation approach balances 
predictive performance with explainability, providing a robust 
framework for forecasting urine culture outcomes based solely 
on laboratory and demographic data.

Development of the LDSS

The LDSS was built using the best-performing ML model 
identified during model selection. SHAP analysis was employed 
to select the ten most informative features, and a simplified 
model was retrained using only these variables. The reduced 
model maintained performance comparable to the full model, 
supporting its suitability for practical implementation.

Instead of the default probability threshold of 0.5, an 
optimized threshold based on Youden’s J statistic was applied 
to improve sensitivity and minimize missed infections. Each 
selected feature was then converted into a binary indicator 
using individual cut-points derived from ROC analysis, enabling 
construction of a straightforward cumulative score.

Feature-importance values were normalized to derive 
clinically interpretable weights. Highly influential predictors 
received slightly higher weights, while moderately informative 
features were scaled conservatively to balance performance 
with interpretability. The final scoring system was recalibrated 
using internal data and externally evaluated, demonstrating 
preserved sensitivity and specificity. This streamlined, 
transparent design ensures that the LDSS is suitable for routine 
use within laboratory workflows.
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Validation of the LDSS

An independent validation dataset, obtained from an affiliated 
hospital within the same healthcare network, was used to 
assess the generalizability and robustness of the LDSS through 
temporal validation. This temporally separated retrospective 
dataset was entirely independent of all model development 
phases, including training, feature selection, and score 
construction.

Performance of the reduced 10-variable RF model and the 
three derived scoring systems was evaluated within this 
separate clinical environment. Standard classification metrics 
were computed and compared with those from the original 
external test set, providing insight into the system’s real-world 
applicability.

The validation strategy adheres to recommendations from the 
International Federation of Clinical Chemistry and Laboratory 
Medicine for evaluating diagnostic tools using independent 
datasets. This approach strengthens the clinical credibility 
of the LDSS by demonstrating reproducibility across diverse 
healthcare settings.

Statistical Analysis

Descriptive statistics are presented as means ± standard 
deviations (SDs) for continuous variables and as frequencies 
with percentages for categorical variables. Comparative 
analyses between the development and validation datasets 
were conducted using:

Table 1. Baseline characteristics of the study population, including demographic, clinical, and laboratory variables.

Characteristicsa Unit
Main dataset 
(n = 49,720) 
mean ± SD

Training set 
(n = 29,832)
mean ± SD

Internal test set 
(n = 9,944)
mean ± SD

External test set 
(n = 9,944)
mean ± SD

Validation set
(n = 2,203)
mean ± SD

p-valueb 
(Main dataset vs. 
validation set)

Age 38.28 ± 26.85 38.07 ± 26.81 38.89 ± 26.99 38.29 ± 26.83 43.92 ± 28.53 <0.05

Male Years 39.69 ± 28.20 39.33 ± 28.12 40.09 ± 28.39 40.37 ± 28.26 48.04 ± 28.38 <0.05

Female Years 37.41 ± 25.96 37.29 ± 25.95 38.17 ± 26.07 37.03 ± 25.85 41.23 ± 28.33 <0.05

Gender 0.152

Male n (%) 18,871 (38.0%) 11,358 (38.1%) 3,766 (37.9%) 3,747 (37.7%) 870 (39.5%)

Female n (%) 30,849 (62.0%) 18,474 (61.9%) 6,178 (62.1%) 6,197 (62.3%) 1,333 (60.5%)

WBC ×109 cells/L 8.47 ± 4.63 8.5 ± 4.91 8.4 ± 3.86 8.45 ± 4.47 8.45 ± 3.48 0.795

Neutrophil ×109 cells/L 5.1 ± 3.4 5.11 ± 3.34 5.05 ± 3.13 5.11 ± 3.81 5.18 ± 3.14 0.244 

Lymphocyte ×109 cells/L 2.45 ± 2.82 2.47 ± 3.27 2.42 ± 1.97 2.43 ± 1.99 2.36 ± 1.26 <0.05

Monocyte ×109 cells/L 0.68 ± 0.85 0.68 ± 1.01 0.68 ± 0.68 0.67 ± 0.37 0.67 ± 0.29 0.168

Eosinophil ×109 cells/L 0.2 ± 0.25 0.2 ± 0.25 0.2 ± 0.25 0.2 ± 0.24 0.19 ± 0.19 <0.05

Basophil ×109 cells/L 0.04 ± 0.06 0.04 ± 0.06 0.03 ± 0.05 0.04 ± 0.07 0.04 ± 0.03 1.000

HGB g/dL 12.26 ± 1.91 12.26 ± 1.9 12.27 ± 1.92 12.27 ± 1.91 12.56 ± 1.98 <0.05

Bacteria count 
(urine) /HPF 33.57 ± 

124.45
33.55 ± 
127.66 33.93 ± 120.89 33.24 ± 118.07 41.7 ± 157.49 <0.05

LYM (urine) /HPF 53.46 ± 
287.59

53.81 ± 
288.38 52.32 ± 279.64 53.53 ± 293.02 64.28 ± 324.2 0.124

Yeast /HPF 3.85 ± 133.83 5.04 ± 170.15 1.95 ± 36.1 2.2 ± 37.23 3.13 ± 55.43 0.587

Mucus /HPF 11.32 ± 30.73 11.34 ± 30.69 10.97 ± 28.36 11.62 ± 33.03 22.14 ± 56.43 <0.05

Cylinder /HPF 0.04 ± 0.22 0.04 ± 0.22 0.04 ± 0.23 0.05 ± 0.23 0 ± 0 <0.05

Density - 1,016.98 ± 
8.17

1,017.02 ± 
8.14 1016.95 ± 8.23 1016.9 ± 8.22 1015.86 ± 

7.19 <0.05

pH - 5.9 ± 0.81 5.91 ± 0.82 5.89 ± 0.81 5.9 ± 0.81 6.05 ± 0.52 <0.05

Urine culture <0.05

Positive n 11,156 (22.4%) 6,694 (22.4%) 2,231 (22.4%) 2,231 (22.4%) 403 (18.3%) 1.000

Negative n 38,564 (77.6%) 23,138 (77.6%) 7,713 (77.6%) 7,713 (77.6%) 1,800 (81.7%) 1.000
aCategorical variables were not included in this table. bContinuous variables were compared using Welch’s t-test, and categorical variables were analyzed with Pearson’s chi-square 
test. A p-value <0.05 was considered statistically significant.
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• Student’s t-test for normally distributed continuous variables

• Welch’s t-test for continuous variables with unequal variances 
or sample sizes

• Pearson’s chi-square test for categorical variables

• Z-tests for proportions and McNemar’s test for paired 
categorical outcomes, particularly for comparing model 
performance metrics across datasets

These statistical comparisons were used to evaluate diagnostic 
consistency and identify significant differences in classification 
outcomes, providing insight into the reproducibility and 
robustness of the LDSS across diverse clinical settings.

All p-values were two-sided, with statistical significance defined 
as p < 0.05. Analyses were conducted using Python 3.13 and its 
associated statistical packages.

Results

Dataset Description and Data Preprocessing

The analytical cohort comprised 51,923 patient encounters, 
including 49,720 records from the main institutional database 
and 2,203 from an affiliated tertiary center. The validation 
cohort was enriched with inpatients from high-acuity units, 
such as Palliative Care and Gynecologic Oncology, and was 
specifically used to assess the external validity of the LDSS.

The validation cohort demonstrated significantly higher age 
across all demographic strata (total: 43.92 vs. 38.28 years; males: 
48.04 vs. 39.69; females: 41.23 vs. 37.41; all p < 0.05). Hematologic 
comparisons revealed statistically significant reductions in 
lymphocyte count (LYM) and eosinophil count, accompanied by a 
modest but significant increase in HGB levels (p < 0.05).

Among urinalysis variables, the validation group exhibited 
higher bacterial counts, increased mucus presence, and 
elevated pH levels, whereas urine specific gravity and cylinder 
counts were lower (p < 0.05 for all). No significant differences 
were observed in white blood cell (WBC), neutrophil, monocyte, 
or basophil counts, nor in leukocyte counts, yeast presence, 
or gender distribution (all p > 0.05). Although the proportion 
of urine culture-positive cases was numerically similar (22.4% 
vs. 18.3%), this difference reached statistical significance (p < 
0.05), potentially reflecting distinct microbiologic or clinical 
characteristics in the validation population.

Overall, these findings indicate that while the two datasets 
are broadly comparable, the validation cohort exhibits 
distinct demographic and laboratory profiles, likely due to its 
inpatient composition. These differences should be considered 
when interpreting LDSS performance in more complex clinical 
settings. Detailed summary statistics and p-values for each 
variable are provided in Table 1.

Hyperparameter Tuning

Each ML model was trained and optimized to achieve 
optimal performance on our dataset. Final hyperparameter 
configurations, tailored to the structure of each algorithm, are 
summarized in the Supplementary Table 2.

Performance Metrics of ML Models

The performance of seven ML models was evaluated using both 
internal and external test datasets. Ensemble-based methods—
RF, CatBoost, and XGBoost—consistently demonstrated high 
accuracy (≥0.929) and F1 scores (>0.83) across both datasets, 
highlighting their robustness for clinical prediction tasks.

On the external test set, RF outperformed all other models, 
achieving the highest ROC-AUC (0.956) and PR-AUC (0.907), 
indicating superior discrimination and precision-recall trade-
off. CatBoost achieved the highest sensitivity (0.771) while 
maintaining balanced performance across other metrics.

KNN demonstrated exceptional specificity (0.988) and PPV 
(0.945) in the external set, making it particularly effective 
for ruling in cases. Conversely, LR, while computationally 
efficient, showed the lowest sensitivity and F1 scores, limiting 
its diagnostic utility.

Performance metrics from the external dataset closely mirrored 
those of the internal test set for all models, reinforcing their 
generalizability and stability. Comprehensive statistics for both 
datasets are provided in Table 2 and Figure 2.

Among all evaluated algorithms, RF exhibited the most 
consistent and highest overall performance, with an internal 
ROC-AUC of 0.952 (95% confidence interval [CI]: 0.948–0.956) 
and an external ROC-AUC of 0.956 [95% CI: 0.952–0.960], along 
with strong PR characteristics.

Given its superior accuracy, consistent generalizability, and 
interpretability, RF was selected as the core algorithm for 
integration into the LDSS. SHAP analysis was then performed 
on the final model to provide insight into the individual 
contribution of each feature to the predicted outcomes.

SHAP Analysis of the Optimal RF Model

Model interpretability was improved using SHAP, which 
quantifies the contribution of each feature to the predictions 
generated by the final RF model. As shown in Figure 3, the 
most influential features were

• Bacteria_Count (SHAP value: 0.061)

• Urine_Leu_Count (0.055)

• Nitrite (0.052)

• Age and Leukocyte Esterase (both 0.041)



Demirci et al. 
LDSS for Reflective Urine Testing

Mediterr J Infect Microb Antimicrob
2026;15:17–33

24

Table 2. Classification performance metrics of the ML models, including accuracy, sensitivity, specificity, and AUC.

Model Sensitivity Specificity PPV NPV Accuracy F1 score ROC-AUC PR-AUC

Internal test set

RF
0.758

(0.741–0.776)

0.985

(0.982–0.987)

0.934

(0.923–
0.946)

0.934

(0.929–
0.939)

0.934

(0.929–0.938)

0.838

(0.826–
0.850)

0.952

(0.948–0.956)

0.897

(0.891–
0.903)

XGBoost
0.768

(0.751–0.784)

0.976

(0.973–0.979)

0.902

(0.889–
0.916)

0.936

(0.930–
0.941)

0.929

(0.925–0.934)

0.830

(0.816–
0.842)

0.930

(0.925–0.935)

0.861

(0.854–
0.868)

LightGBM
0.681

(0.664–0.699)

0.972

(0.968–0.976)

0.876

(0.862–
0.894)

0.913

(0.907–
0.919)

0.907

(0.900–0.913)

0.766

(0.751–
0.780)

0.916

(0.911–0.921)

0.825

(0.818–
0.832)

CatBoost
0.764

(0.747–0.784)

0.980

(0.977–0.983)

0.918

(0.907–
0.931)

0.935

(0.930–
0.940)

0.932

(0.927–0.937)

0.834

(0.822–
0.847)

0.930

(0.925–0.935)

0.861

(0.854–
0.868)

LR
0.350

(0.330–0.370)

0.969

(0.965–0.973)

0.765

(0.738–
0.791)

0.838

(0.830–
0.846)

0.830

(0.823–0.837)

0.480

(0.459–
0.501)

0.790

(0.782–0.798)

0.593

(0.583–
0.603)

ANN (MLP)
0.561

(0.541–0.582)

0.943

(0.937–0.947)

0.738

(0.717–
0.758)

0.881

(0.875–
0.888)

0.857

(0.850–0.864)

0.637

(0.621–
0.655)

0.844

(0.837–0.851)

0.698

(0.689–
0.707)

KNN
0.723

(0.705–0.743)

0.984

(0.981–0.987)

0.929

(0.917–
0.940)

0.925

(0.919–
0.930)

0.925

(0.920–0.931)

0.813

(0.801–
0.827)

0.947

(0.943–0.951)

0.903

(0.897–
0.909)

RF (with top 10 
variables)*

0.769

(0.761–0.777)

0.981

(0.979–0.984)

0.924

(0.919–
0.930)

0.936

(0.931–
0.941)

0.934

(0.929–0.939)

0.8397

(0.832–
0.847)

0.947

(0.944–0.952)

0.890

(0.884–
0.896)

External test set

RF
0.76

(0.744–0.778)

0.987

(0.984–0.989)

0.943

(0.932–
0.953)

0.935

(0.929–0.94)

0.936

(0.931–0.941)

0.842

(0.829–
0.854)

0.956

(0.952–

0.96)

0.907

(0.901–
0.913)

XGBoost
0.767

(0.748–0.784)

0.980

(0.977–0.983)

0.917

(0.906–
0.930)

0.936

(0.930–
0.942)

0.932

(0.928–0.938)

0.836

(0.824–
0.848)

0.932

(0.927–0.937)

0.877

(0.871–
0.883)

LightGBM
0.686

(0.666–0.704)

0.976

(0.972–0.979)

0.892

(0.877–
0.907)

0.915

(0.909–
0.921)

0.911

(0.905–0.916)

0.776

(0.762–
0.789)

0.919

(0.914–0.924)

0.840

(0.833–
0.847)

CatBoost
0.771

(0.754–0.790)

0.982

(0.979–0.985)

0.924

(0.911–
0.936)

0.936

(0.931–
0.942)

0.934

(0.929–0.939)

0.840

(0.827–
0.852)

0.929

(0.924–0.934)

0.875

(0.868–
0.882)

LR
0.339

(0.321–0.358)

0.968

(0.964–0.972)

0.755

(0.725–
0.781)

0.835

(0.828–
0.842)

0.827

(0.819–0.834)

0.467

(0.445–
0.487)

0.793

(0.785–0.801)

0.597

(0.587–
0.607)

ANN (MLP)
0.565

(0.544–0.585)

0.937

(0.932–0.943)

0.722

(0.700–
0.744)

0.881

(0.874–
0.888)

0.854

(0.847–0.861)

0.634

(0.618–
0.651)

0.846

(0.839–0.853)

0.707

(0.698–
0.716)

KNN
0.719

(0.700–0.738)

0.988

(0.985–0.990)

0.945

(0.933–
0.955)

0.924

(0.918–
0.929)

0.927

(0.923–0.933)

0.817

(0.803–
0.830)

0.947

(0.943–0.951)

0.905

(0.899–
0.911)

*Reduced model including only the top 10 predictors selected by SHAP analysis: bacterial count in urine, urinary LYM, urinary nitrite test, patient age, leukocyte esterase activity 
in urine, HGB concentration, gender, LYM, urine density, and urinary erythrocyte count
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These features correspond with well-established clinical 
markers of UTI, supporting the biological plausibility of the 
model.

Features with moderate importance included HGB, Gender, and 
LYM, with SHAP values ranging from 0.017 to 0.030. Features 
such as Bilirubin, Urobilinogen, and Ketone contributed 
minimally, each with SHAP values below 0.003.

Overall, the feature ranking confirms that the model primarily 
relies on clinically relevant variables, enhancing transparency 
and supporting its integration into laboratory decision-making.

Performance Metrics of the LDSS

A simplified RF model, built using the top 10 SHAP-derived 
features, maintained performance comparable to the full-
feature model (ROC-AUC: 0.952 vs. 0.947; PR-AUC: 0.897 vs. 
0.890), supporting its suitability for clinical implementation 
(Table 2). Based on these variables, three complementary 
scoring systems were developed to address distinct operational 
needs within laboratory workflows (Table 3):

• Model-Prioritized Score: Retains the behavior of the original 
ML model by assigning weights directly from normalized SHAP 

values. This version is ideal for institutions seeking high overall 
discrimination while remaining faithful to the underlying 
algorithm.

• Dual-Optimization Score: Adjusts feature weights to balance 
sensitivity and specificity, as reflected in stable metrics across 
both test datasets (Table 4, Figure 4). This score is intended for 
laboratories aiming to minimize both missed infections and 
unnecessary cultures.

• SAFE-Score: Optimized for high sensitivity and NPV, this 
score is suitable for safety-critical settings where missing true 
infections is unacceptable—such as high-acuity units, elderly 
populations, or immunocompromised patients. Its higher 
sensitivity comes at the expense of specificity, highlighting 
the trade-off between diagnostic conservatism and resource 
utilization.

Across all scoring systems, sensitivity remained consistent in 
external and independent validation cohorts, while specificity 
varied according to prioritization strategy (Table 4). Together, 
these tools provide laboratories with flexible options that can 
be tailored to local clinical priorities, test-ordering practices, 
and antimicrobial stewardship goals (Figure 4).

Figure 2. ROC and precision-recall PR curves illustrating the predictive performance of ML models.

PR, precision-recall.
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Figure 3. SHAP summary plot showing variable importance in the RF model.

Table 3. Confusion matrix–derived performance metrics of the ML models, including sensitivity, specificity, PPV, and NPV.

Feature Threshold 
binarization

Normalized 
SHAP value

Model-
Prioritized 
Score 
System1

Dual-
Optimization 
Score2

SAFE-Score 
System 
(sensitive 
assessment for 
exclusion)3

Scientific justification

Bacteria count >20, n 0.175 0.20 0.32 0.89 Major diagnostic marker for infection; 
emphasized clinically.

Urine LYM >25, n 0.157 0.18 0.22 0.05 Strongly correlates with infection; slightly 
boosted for sensitivity.

Nitrite = 1 0.147 0.17 0.15 0.77 Positive nitrite is a direct indicator of gram-
negative bacterial activity.

Age ≥65 years 0.118 0.15 0.23 0.42 Increased risk in elderly population (>65 
years).

Leucocyte 
esterase >0 0.116 0.14 0.13 0.82 Biochemical indicator of leukocytes; 

moderate importance.

HGB <12 0.085 0.10 0.12 0.71 Low HGB levels linked to increased infection 
susceptibility.

Gender = 1 (Female) 0.062 0.08 0.04 0.06 Higher infection prevalence anatomically in 
females.

LYM <1.5 0.051 0.06 0.1 0.65 Low lymphocyte count indicates 
immunosuppression risk.

Density >1020 0.048 0.05 0.09 0.03 Higher urine density occasionally correlates 
with infection.

Urine 
erythrocyte >0 0.047 0.05 0.1 0.77 Presence may suggest urinary tract pathology 

but less specific.
1The first system was developed using model-derived, data-driven thresholds and weighting. 2The second system was designed to optimize both sensitivity and specificity, 
achieving balanced classification performance. 3The third system prioritized minimizing false negatives, emphasizing maximum sensitivity and NPV.
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Discussion

ML-based approaches offer substantial potential for the early 
diagnosis of UTIs. With the rising prevalence of antibiotic 
resistance, reducing unnecessary antibiotic use has become 
increasingly critical. Recent studies demonstrate that ML 
models improve diagnostic accuracy by integrating clinical 
symptoms, medical history, and urinary biomarkers, rather 
than relying solely on culture results[22].

Moreover, AI–driven decision-support systems can reduce 
diagnostic workload in hospitals, although their clinical 
validation remains limited[15]. Urinary biomarkers, such as 
nitrite and leukocyte esterase, exhibit high sensitivity for UTI 

diagnosis, yet their integration into ML models is essential to 
mitigate false-positive results[23]. AI-assisted methodologies are 
expected to be particularly beneficial for early detection of 
recurrent UTIs and multidrug-resistant pathogens, potentially 
improving patient outcomes and guiding more precise 
therapeutic interventions[23,24].

In this study, we evaluated the performance of multiple 
ML models in predicting urine culture outcomes and 
assessed their clinical applicability using explainable AI (XAI) 
techniques. Validation on a demographically and clinically 
distinct inpatient cohort further demonstrated the robustness 
and real-world adaptability of the LDSS. The incorporation 
of XAI enhanced interpretability, providing insight into the 

Table 4. Performance metrics of the LDSS evaluated using both external test and validation datasets.

A. Results from the external test set.

Method Sensitivity (%) Specificity (%) PPV NPV PLR NLR Accuracy F1 score ROC-AUC PR-AUC

Model-Prioritized Score 
System1

55.94 
(53.87–57.99)

85.83 
(85.03–86.59)

53.31 
(51.29–
55.32)

87.07 
(86.30–
87.81)

3.95

(3.69–
4.22)

0.51

(0.49–
0.54)

79.1 
(78.31–
79.91)

54.59 
(52.57–
56.60)

70.88 
(67.58–
74.28)

54.62 
(50.71–
57.71)

Dual-Optimization 
Score System2

64.77 
(62.76–66.72)

76.62% 
(75.67–77.55)

44.49

(42.79–
46.20)

88.26 
(87.47–
89.01)

2.77

(2.47–
3.07)

0.46

 (0.44–
0.49)

73.96 
(73.09–
74.82)

52.75

(51.03–
54.46)

70.70 
(68.70–
72.70)

54.63 
(52.72–
56.72)

SAFE-Score System3 95.34 
(94.38–96.14)

20.29% 
(19.41–21.20)

25.70

(24.77–
26.66)

93.77 
(92.51–
94.83)

1.20

 (1.03–
1.136)

0.23

(0.21–
0.25)

37.13 
(36.18–
38.08)

40.49 
(39.44–
41.55)

57.81 
(57.80–
57.83)

60.52 
(55.55–
65.58)

B. Results from the validation test set.

Method Sensitivity Specificity PPV NPV PLR NLR Accuracy F1 score ROC-AUC PR-AUC

Model-Prioritized Score 
System4

57.95

(53.00–62.78)

84.78

(83.04–86.41)

46.47

(43.09–
49.89)

89.87

(88.74–
90.85)

3.81

(3.32–
4.37)

0.50

(0.44–
0.56)

79.80

(78.06–
81.46)

51.51

(47.30–
55.37)

71.31

(68.60–
73.94)

34.80

(31.05–
38.61)

Dual-Optimization 
Score System5

66.50

(61.70–71.07)

76.48

(74.44–78.42)

39.19

(36.65–
41.80)

90.92

(89.71–
92.00)

2.83

(2.54–
3.15)

0.44

(0.38–
0.50)

74.63

(72.75–
76.43)

49.36

(45.86–
53.01)

71.40

(68.82–
73.94)

32.35

(29.00–
35.66)

SAFE-Score System6
94.87

(92.26–96.79)

24.30

(22.33–26.36)

22.22

(21.63–
22.83)

95.40

(93.14–
96.95)

1.25

(1.21–
1.30)

0.21

(0.14–
0.32)

37.40

(35.38–
39.46)

36.08

(33.46–
38.63)

59.58

(58.14–
61.03)

22.03

(20.05–
24.01)

1TP = 1,248; TN = 6,620; FP = 1,093; FN = 983. 2TP = 1,445; TN = 5,910; FP = 1,803; FN = 786. 3TP = 2,127; TN = 1,565; FP = 6,148; FN = 104.
4TP = 237; TN = 1,521; FP = 273; FN = 172. 5TP = 272; TN = 1,372; FP = 422; FN = 137. 6TP = 388; TN = 436; FP = 1,358; FN = 21.

Figure 4. LDSS workflow illustrating selection criteria based on diagnostic accuracy and operational priorities.
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decision-making process and supporting potential integration 
in complex healthcare settings.

The LDSS was developed using all physician-ordered urine 
culture requests, including both culture-positive and culture-
negative cases. Consequently, the dataset reflects the complete 
real-world distribution of suspected UTIs encountered in 
laboratory practice, enabling the model to learn discriminative 
patterns for both infection and non-infection samples. 
Importantly, the LDSS functions solely as a laboratory-level 
decision-support tool rather than a diagnostic system. Its 
predictions are limited to variables available in the LIS and are 
intended to complement, not replace, physicians’ diagnostic 
judgment.

Gender and Age-Related UTI Incidence

In our study, UTIs were significantly more common in female 
patients than in males. This finding aligns with existing literature 
and reinforces the well-established notion that women are 
more susceptible to UTIs due to urogenital anatomy, hormonal 
fluctuations, and lifestyle factors. Schmiemann et al.[1] reported 
that UTI incidence in women is four to five times higher than 
in men. Similarly, Hooton et al.[25] identified a higher risk in 
women attributable to a shorter urethra and variability in 
periurethral microbial flora. Additional risk factors include 
age, postmenopausal hormonal changes, and a history of 
recurrent infections.

Age also emerged as a critical determinant, with UTI incidence 
progressively increasing—particularly among women aged 
65 years and older. While Foxman et al.[26] reported peak 
incidence in women aged 15–29, with a secondary rise in 
postmenopausal groups, and Møller et al.[11] linked estrogen 
depletion after age 50 to heightened susceptibility, our 
study identified older age (≥65 years) as an independent 
risk factor for positive urine culture in the LDSS model. This 
finding underscores the importance of incorporating age as a 
predictive variable and reflects the growing burden of UTIs in 
elderly populations.

Performance of ML Models

The predictive performance of the models developed in 
this study is consistent with, and in several cases surpasses, 
previously reported ML approaches for UTI prediction. Among 
the algorithms tested, ensemble-based models—particularly 
RF and CatBoost—demonstrated consistently high accuracy, 
balanced sensitivity and specificity, and favorable F1 scores. 
Compared to prior models reported by de Vries et al.[27] and 
Flores et al.[2], our RF model showed superior performance 
across multiple evaluation metrics. Likewise, our CatBoost 
implementation outperformed the model described by 
Mancini et al.[13], which exhibited lower AUC and F1 values in a 
comparable clinical context.

Tree-based gradient boosting methods, such as XGBoost and 
LightGBM, also performed robustly and yielded results similar 
to high-performing models developed by Choi et al.[5] and 
Lin et al.[28], indicating strong generalizability across diverse 
patient populations. In studies by Dhanda et al.[29] and Taylor et 
al.[30], RF and XGBoost models similarly demonstrated superior 
discriminatory capacity, achieving AUC-ROC values of 0.85 and 
0.90, respectively.

The KNN model achieved precision metrics comparable to prior 
studies; however, its limited interpretability may constrain 
clinical adoption[7]. Conversely, LR, while highly interpretable, 
exhibited lower sensitivity and F1 scores—consistent with 
Ramgopal et al.[10], where the model tended to overpredict 
positive cases, reducing precision. ANN (MLP) models, though 
commonly employed in UTI prediction studies, demonstrated 
moderate performance in our dataset, slightly below previously 
reported benchmarks[2].

Overall, these results reinforce the value of ensemble ML 
methods in the context of a LDSS for UTI prediction. They offer 
high predictive accuracy and consistent performance across 
internal and external validation cohorts, supporting their 
applicability in real-world clinical settings.

Several studies have investigated ML–based urine culture 
prediction, varying in complexity and generalizability. 
Seheult et al.[31] developed a decision-tree algorithm across 
multiple institutions to identify urinalysis predictors of 
culture positivity, reporting ROC-AUC values of approximately 
0.78–0.79; however, their study lacked external validation 
and interpretability assessment. By comparison, our model 
achieved higher discrimination during development (ROC-
AUC = 0.94–0.96) under cross-validation. Following conversion 
into a simplified score-based LDSS, real-world performance 
remained consistent (ROC-AUC ≈ 0.70–0.72; F1 ≈ 0.50–
0.55). This decline reflects the expected trade-off between 
model complexity and clinical interpretability, as the LDSS 
was designed for practical integration into LIS rather than 
maximizing algorithmic precision[31].

Sergounioti et al.[32] applied ensemble classifiers, including 
RF and XGBoost, to real-world laboratory data, achieving 
AUROC values of 0.79–0.82. However, their models combined 
clinical and laboratory parameters and lacked transparent 
feature-importance analysis. In contrast, our LDSS relied 
solely on structured laboratory data, achieved comparable 
discrimination (0.70–0.72), and preserved interpretability and 
reproducibility through rule-based score calibration via the 
Model-Prioritized and Dual-Optimization systems.

Sheele et al.[33] investigated bacteriuria prediction in an 
emergency-department cohort using mixed clinical–laboratory 
features, yielding AUC-ROC values of 0.86–0.93 depending 
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on the CFU/mL threshold. While their results were strong in 
a high-acuity population, our laboratory-only LDSS achieved 
comparable sensitivity (up to 95%) in routine diagnostic 
settings, highlighting its potential as a front-end decision-
support tool for reflex culture testing.

Collectively, previous studies demonstrated the feasibility of 
ML-assisted urine culture prediction but often emphasized 
algorithmic performance over interpretability and clinical 
applicability. The present study addresses this gap by establishing 
a transparent, externally validated, and operational LDSS 
framework that maintains clinically acceptable performance 
while remaining fully interpretable and implementable within 
routine laboratory workflows.

Explainability and Feature Importance

SHAP-based feature-importance analysis in our study revealed 
a variable ranking that aligns with and extends existing 
literature. The most influential predictors were bacterial 
count, urine leukocyte count, nitrite, age, and leukocyte 
esterase. These findings are consistent with the meta-analysis 
by Devillé et al.[8], which reported that combining nitrite and 
leukocyte esterase yielded a sensitivity of 88% and specificity 
of 98% for UTI diagnosis. Similarly, Lachs et al.[34] demonstrated 
that integrating these parameters with clinical symptoms 
significantly improves diagnostic accuracy.

Notably, our model also identified HGB levels, sex, and LYMs as 
important features with relatively high SHAP values, suggesting 
sensitivity to broader systemic or demographic factors that 
may influence infection risk. This aligns with Zhao et al.[35], 
who reported age and sex among the top predictors in a 
SHAP-based post-urostomy UTI risk model, and Wang et al.[36], 
who found that systemic inflammatory markers and age were 
highly important in predicting post-surgical UTIs.

The predominance of microscopic urinalysis variables—
particularly bacterial and leukocyte counts—over clinical or 
demographic features underscores the model’s responsiveness 
to diagnostic biomarkers. This differentiates our approach 
from models such as Lee et al.[37], which focused on predicting 
antimicrobial resistance patterns but also leveraged SHAP 
analysis for interpretability.

Recent literature highlights the limitations of reflexive urine 
culture testing in the absence of clinical context. Munigala 
et al.[38] and others have shown that reflex algorithms 
triggered by markers like leukocyte esterase or nitrite may 
reduce test volume but compromise diagnostic precision 
when symptom data are unavailable. Fakih et al.[39] similarly 
argue that urinalysis alone is insufficient for accurate UTI 
diagnosis in asymptomatic patients, risking overdiagnosis and 
overtreatment.

Our study addresses the diagnostic gap through a reflective 
developed solely using structured laboratory data. Because 
symptom data are typically absent from LIS, the LDSS optimizes 
culture utilization within real-world laboratory constraints. 
Rather than functioning as an autonomous decision-maker 
or reflex trigger, the system serves as a reflective tool, 
providing SHAP-based analytical insights to support laboratory 
physicians’ expert interpretation.

This reflective framework promotes standardized testing 
and interdisciplinary consultation. In equivocal cases, LDSS 
outputs can facilitate dialogue between laboratory and 
clinical teams, helping reconcile test reduction with diagnostic 
safety. Such an approach advances rational microbiological 
testing and provides a scalable model for clinician-laboratory 
collaboration[40].

The LDSS demonstrated robust predictive performance 
across internal and external datasets, supporting its seamless 
integration into routine laboratory workflows and reflective 
testing processes. The system is designed not to replace culture 
testing but to prioritize it based on evidence-driven probability, 
maintaining diagnostic stewardship.

To enhance accessibility for readers from diverse clinical 
and laboratory backgrounds, this study emphasizes the 
translational relevance of the LDSS over computational 
complexity. Its explainable design—supported by SHAP analysis 
and simplified scoring systems—enables non-technical users 
to interpret outputs transparently. While technical details 
were included to ensure methodological transparency and 
reproducibility, the interpretability of the system fosters trust, 
usability, and interdisciplinary communication between 
laboratory specialists and treating physicians. By promoting 
shared understanding of data-driven reasoning, the LDSS 
supports faster decision-making, improved test stewardship, 
and enhanced integration of laboratory insights into clinical 
workflows.

LDSS

Although symptom data were unavailable in the laboratory 
dataset, the LDSS was intentionally designed to function 
within the routine workflow of laboratory medicine, where 
test requests are frequently submitted without accompanying 
clinical narratives. By aligning the model with real-world 
laboratory constraints, the LDSS remains applicable and 
scalable across diverse clinical settings.

To improve interpretability and minimize unnecessary 
complexity, feature selection was applied to reduce the number 
of input variables. Prior studies have consistently demonstrated 
that parsimonious models are better suited for clinical 
implementation, as they are easier to interpret and maintain, 
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while preserving acceptable predictive performance[41,42]. 
Accordingly, subsequent model development was restricted 
to ten key parameters that did not result in a statistically or 
clinically meaningful decline in performance. This strategy 
ensured an optimal balance between model simplicity and 
predictive accuracy.

Several published studies have similarly developed LDSS 
frameworks based on urine culture data, including those 
reported by de Vries et al.[27], Dhanda et al.[29], Del Ben et al.[43], 
and Flores et al.[2] Among these, Del Ben et al.[43] employed a 
decision-tree-based approach, whereas the remaining studies 
selected RF as the primary algorithm. The LDSS developed by 
de Vries and colleagues demonstrated performance metrics 
comparable to those observed in the present study, with AUC-
ROC values ranging from 0.70 to 0.80. Although their model 
achieved a higher PPV, its NPV was lower than that of our 
model, highlighting differences in clinical trade-offs between 
false-positive and false-negative predictions.

Notably, Dhanda et al.[29] and Flores et al.[2] implemented 
scoring systems that stratified patients into high- and low-
risk groups, an approach that is conceptually aligned with the 
strategy adopted in the present study. Across key performance 
metrics, the predictive accuracy of their models was broadly 
comparable to that of our system.

What distinguishes our LDSS is the integration of three 
distinct predictive models within a unified decision-making 
framework. To our knowledge, this is the first study to report 
the implementation of such a multi-model structure for UTI 
prediction. This design enables clinicians and laboratory 
physicians to select among alternative strategies according to 
specific clinical priorities, such as maximizing case detection or 
minimizing unnecessary diagnostic testing.

Although the SAFE-Score achieved excellent sensitivity, its 
specificity was limited (approximately 20%), a trade-off that may 
raise concerns regarding potential overtesting. Importantly, 
the LDSS was intentionally designed to accommodate this 
limitation by offering three complementary scoring strategies, 
each reflecting a distinct clinical philosophy. These include 
prioritization of patient safety (SAFE-Score), balanced diagnostic 
performance (Dual Optimization), and strict adherence to 
model-derived predictions (Model-Prioritized). Rather than 
enforcing a one-size-fits-all solution, the LDSS functions as a 
flexible framework that facilitates consensus-based decision-
making, allowing institutions to align model selection with 
local clinical expectations and operational priorities.

Crucially, the proposed system is not static. By continuously 
incorporating real-world data—particularly cases in which 
algorithmic recommendations are compared with expert 
laboratory physician judgments—the LDSS can be iteratively 

retrained and refined. As additional large-scale datasets are 
accumulated over time, improvements in specificity and overall 
diagnostic balance are anticipated, reflecting the inherent 
capacity of ML models to evolve with expanding data inputs. In 
this respect, the LDSS serves not only as an immediate decision-
support tool but also as a scalable platform for continuous 
learning and performance optimization.

Within the Turkish healthcare context, reflective testing has 
not yet been systematically implemented. Nevertheless, the 
LDSS offers a structured and standardized framework that 
may facilitate its adoption, reduce inappropriate urine culture 
requests, and support antimicrobial stewardship initiatives. 
Moreover, the Ministry of Health of Türkiye has recently 
introduced a “Rational Laboratory Utilization” directive that 
explicitly promotes reflex and reflective testing practices [44]. This 
regulatory emphasis is expected to accelerate the integration 
of reflective testing into routine laboratory workflows, 
highlighting the timeliness and practical relevance of the 
proposed system.

Finally, the LDSS was designed for seamless integration into 
routine clinical practice through Microsoft Excel, a widely 
available and familiar platform in most healthcare settings. All 
three predictive models are embedded within a single interface 
and generate concurrent outputs, enabling direct comparison 
and transparent interpretation at the point of use.

Due to time constraints, the validation cohort was relatively 
small. Nevertheless, implementation of the LDSS within 
our hospital’s central laboratory is planned, where it will 
be deployed to support real-time microbiological decision-
making. This implementation will allow prospective validation 
of the system within routine laboratory workflows, evaluation 
of its diagnostic impact, and quantification of downstream 
outcomes, including reductions in unnecessary urine 
cultures, shorter turnaround times, and improved antibiotic 
stewardship. In addition, future multicenter studies across 
diverse healthcare systems are planned, incorporating 
structured clinical variables such as symptomatology, 
comorbidities, and medication history to further enhance the 
model’s generalizability and clinical relevance.

Study Limitations

Although this study leveraged a large dataset and included 
external validation, several limitations should be acknowledged. 
First, all data were derived from a single healthcare network, 
which may limit generalizability to institutions with different 
patient populations, laboratory infrastructures, or clinical 
workflows. Second, the retrospective study design precluded 
assessment of the LDSS in real-time clinical decision-making; 
prospective implementation studies are therefore required to 
determine its effects on clinical practice and patient outcomes.
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Third, the model relied exclusively on structured laboratory 
data and did not incorporate patient symptoms, comorbidities, 
medication history, or clinical notes—factors known to 
influence UTI risk assessment and antibiotic prescribing. 
In routine clinical care, integration of such information is 
primarily the responsibility of the treating physician, who orders 
diagnostic tests based on patient history, clinical presentation, 
and prevailing guidelines. In contrast, laboratory physicians 
are tasked with processing submitted specimens according to 
standardized pre-analytical and analytical protocols. Although 
pre-preanalytical factors, such as appropriate test selection, are 
important, these data are rarely available to LIS in a structured, 
analyzable format. Consequently, most LIS environments 
contain only coded test orders and limited demographic 
information, without access to patient symptomatology or 
detailed clinical context.

Within these real-world constraints, the LDSS was designed not 
as a replacement for clinical judgment but as a complementary, 
interpretable decision-support tool that standardizes reflective 
testing and promotes communication between laboratory 
and clinical teams. Accordingly, the system functions as a 
laboratory-based reflex testing prioritization tool rather than 
as a diagnostic or therapeutic decision-making platform.

Fourth, despite robust performance in both internal and 
external test sets, the relatively small independent validation 
cohort—enriched for high-acuity inpatients—may introduce 
spectrum bias and lead to overestimation of sensitivity in 
complex clinical populations. Fifth, although the conventional 
definition of significant bacteriuria is ≥105 CFU/mL, this study 
adopted a ≥104 CFU/mL threshold based on emerging clinical 
evidence and institutional practice. Future investigations 
should evaluate the effects of alternative thresholds on model 
calibration and performance across different clinical settings.

Sixth, scoring weights and feature thresholds were calibrated 
using a fixed probability cutoff and Youden’s index derived 
from the present dataset. Optimal thresholds may vary across 
institutions and will require local adjustment to maintain 
the desired balance between sensitivity and specificity. 
Finally, while SHAP values were employed to enhance model 
interpretability, clinician acceptance, usability, and integration 
into routine workflows were not formally assessed. Future 
implementation studies are therefore essential to evaluate user 
engagement, potential alert fatigue, and cost-effectiveness 
prior to widespread clinical deployment.

Conclusion

We developed and preliminarily validated an interpretable, 
multi-model LDSS designed to improve the efficiency of urine 
culture utilization. By integrating ensemble ML approaches with 

SHAP-based interpretability, the system demonstrated strong 
discriminatory performance while offering flexible scoring 
strategies that prioritize sensitivity, specificity, or an optimized 
balance between the two. The LDSS has the potential to reduce 
unnecessary urine cultures, support antimicrobial stewardship 
efforts, and promote standardized, evidence-based laboratory 
decision-making.

Future work will focus on prospective, real-world 
implementation across diverse clinical settings. Planned 
enhancements include integration with electronic health 
record–derived clinical data, local calibration of decision 
thresholds, and systematic evaluation of clinical impact, user 
adoption, and cost-effectiveness. These steps are critical for 
translating this early-stage model into a scalable and clinically 
actionable decision-support tool.
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