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Abstract

Introduction: Urinary tract infections are a common diagnostic challenge. Although urine culture remains the gold standard, it is time-consuming
and often ordered reflexively. This study aimed to develop and validate an interpretable machine-learning—based Laboratory Decision-Support
System (LDSS) to guide reflective urine culture prioritization using only structured laboratory data.

Materials and Methods: We analyzed a retrospective cohort of 51,923 adult patients. Seven machine learning algorithms were trained, with the
Random Forest (RF) model demonstrating the highest accuracy. SHapley Additive exPlanations was employed to ensure model interpretability. A
reduced RF model, using the top 10 predictive features, was used to construct three scoring systems: one emphasizing model fidelity, one optimizing
diagnostic balance, and one maximizing sensitivity.

Results: The RF model demonstrated excellent performance (external receiver operating characteristic —area under the curve [ROC-AUC]: 0.956). The
simplified 10-variable model maintained high accuracy (ROC-AUC: 0.947). Key predictors included bacterial count, leukocyte count, nitrite presence,
and patient age. The scoring systems offered flexible options tailored to different diagnostic priorities, with the SAFE-Score achieving 95.3% sensitivity.
Conclusion: The developed LDSS supports rational antibiotic use by reducing unnecessary culture testing. Its explainable structure facilitates
collaboration between laboratory professionals and clinicians, contributing to standardized reflective testing workflows and interdisciplinary decision-
making and strengthens antimicrobial stewardship, while preserving the central role of urine culture in infection management.
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Giris: idrar yolu enfeksiyonlari sik karsilasilan bir tani sorunudur. Altin standart olan idrar kiltiirii, hem zaman aliadir hem de cogu zaman gereksiz
yere istenir. Bu calismada, yalnizca yapilandiriimis laboratuvar verilerini kullanarak reflektif idrar kiltiirti istemine rehberlik edecek, yorumlanabilir
bir makine 6grenimi (ML) tabanli Laboratuvar Karar Destek Sistemi (LKDS) gelistirilmesi ve dogrulanmasi amaclandi.

Gereg ve Yontem: Retrospektif olarak 51.923 eriskin hastaya ait veriler incelendi. Yedi ML algoritmasi egitildi; en yiiksek dogruluk Rastgele Orman
(Random Forest, RF) modelinde elde edildi. Model seffafligi icin SHapley Additive exPlanations kullanildi. En iyi 10 6zellikten olusan sadelestirilmis

Cite this article as: Demirci F, Aksit M, Akbulut i, Demirci A. A laboratory decision-support system for reflective urine culture testing: Development of an interpretable
Al model. Mediterr ] Infect Microb Antimicrob.

Address for Correspondence/Yazisma Adresi: Ferhat Demirci MD, Dokuz Eyliil University, Institute of Health Sciences, Epub: 07.01.2026
Department of Neurosciences, izmir, Tiirkiye Published: 03.02.2026
E-mail: drferhat5505@hotmail.com ORCID ID: orcid.org/0000-0002-5999-3399

Received/Gelis Tarihi: 18.07.2025 Accepted/Kabul Tarihi: 08.12.2025

@@@@ ©Copyright 2026 The Author(s). Published by Galenos Publishing House on behalf of Infectious Diseases and Clinical Microbiology Specialty Society of Turkey.
ol Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0

17


https://orcid.org/0000-0002-5999-3399
https://orcid.org/0000-0003-2106-9130
https://orcid.org/0000-0002-4840-6865
https://orcid.org/0000-0002-4759-1990

Demirci et al.
LDSS for Reflective Urine Testing

RF modeliyle ti¢ farkli puanlama sistemi gelistirildi: Model dogruluguna oncelik veren, tanisal dengeyi optimize eden ve hassasiyeti en (st diizeye
ctkaran modeller.
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Bulgular: RF modeli miikemmel performans gosterdi (harici testler — alici isletim karakteristigi egrisi altinda kalan alan [ROC-AUC]: 0,956).
Basitlestirilmis 10 degiskenli model yiiksek dogrulugu korumustur (ROC-AUC: 0,947). Temel ongorticliler arasinda bakteri sayisi, [6kositler, nitrit ve
yas yer almistir. Skorlama sistemleri, farkl tani hedeflerine gore uyarlanmis esnek secenekler sunmus ve SAFE-Skoru %95,3 hassasiyete ulasmistir.

Sonug: Gelistirilen LKDS, gereksiz kiiltir sayisini azaltarak rasyonel antibiyotik kullanimini desteklemektedir. Aciklanabilir yapisi, laboratuvar
profesyonelleriyle klinisyenler arasindaki is birligini kolaylastirarak standartlastiriimis reflektif test stireclerine ve disiplinler arasi karar vermeye katki

saglar.

Anahtar Kelimeler: idrar yolu enfeksiyonlari, makine 6grenimi, idrar kiiltiirii

Introduction

Urinary tract infections (UTIs) are among the most common
infections in clinical practice, with an estimated global
incidence exceeding 150 million cases annuallyl. They
are associated with substantial healthcare costs, frequent
antibiotic prescriptions, and increased diagnostic burden,
particularly in outpatient and emergency settingsi3. Accurate
diagnosis remains challenging due to nonspecific symptoms
and reliance on time-consuming laboratory tests®*.

Urine culture is considered the gold standard for UTI diagnosis.
However, its 24—48-hour turnaround often necessitates empiric
antibiotic treatment before microbiological confirmationl.
This practice contributes to antimicrobial resistance, now
recognized by the World Health Organization as a global
health threat®. Moreover, up to 60%—70% of urine cultures
yield negative or clinically insignificant results, highlighting
potential overuse of testing and therapyl..

Rapid dipstick tests, detecting leukocyte esterase and nitrite,
provide immediate screening but show variable performance
across populations, with sensitivity and specificity ranging
from 68% to 88% and 17% to 98%, respectivelyt!.

This diagnostic uncertainty has prompted efforts to improve
laboratory decision-making, including the use of reflective
testing. Reflective testing, increasingly recognized in modern
laboratory medicine, involves laboratory physicians adding
further analyses or interpretative comments after reviewing
initial test results to enhance diagnostic reasoning®. In
UTls, this expert-led approach aids accurate interpretation
and encourages more judicious use of microbiological
testing. Laboratory physicians thus face the dual challenge
of minimizing unnecessary culture requests while ensuring
patients with a high likelihood of positive cultures are correctly
identified.

In most laboratory information systems (LIS), detailed symptom
information is not captured; only test orders and preliminary
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diagnoses, such as International Classification of Diseases (ICD)
codes, are typically available. Consequently, the predictive
modeling approach in this study relied solely on structured
laboratory data. To address this, we developed a standardized,
interpretable, and data-driven Laboratory Decision-Support
System (LDSS) to optimize urine culture utilization using
routine laboratory parameters. The LDSS is not intended to
replace clinical diagnoses but to assist laboratory physicians
in prioritizing reflex urine culture testing within laboratory
workflows. Diagnostic responsibility remains entirely with
the treating clinician, while the LDSS provides reproducible,
standardized insights derived from LIS data.

Artificial intelligence (Al) and machine learning (ML) have
gained increasing attention for developing predictive models
in UTI diagnosis. Various algorithms—including Logistic
Regression (LR), Random Forests (RFs), Extreme Gradient
Boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), and TabNet—have demonstrated robust
performance using structured data such as urinalysis results,
demographics, and clinical history'®'2. Reported area under
the receiver operating characteristic curve (AUROC) values
commonly exceed 0.85, with some studies achieving 0.95 or
higher in external validation cohorts!" "I,

Recent studies have highlighted the importance of model
interpretability. By employing SHapley Additive exPlanations
(SHAP), our LDSS not only ensures transparency but also
facilitates clinical integration by illustrating the real-time
contribution of each variable. Real-world implementations
of ML-based LDSSs have shown reductions in unnecessary
culture orders, accelerated treatment decisions, and improved
antibiotic stewardship outcomes!'21,

Despite these advances, challenges remain. Many predictive
models are trained on single-center datasets and lack external
validation, raising concerns about generalizability across
institutions and diverse patient populations!™l. Additionally,
variability in urinalysis platforms and clinical practice patterns
may limit reproducibility and scalability.
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Unlike existing tools, the proposed LDSS provides three distinct
scoring systems tailored to different clinical priorities, ranging
from high-sensitivity triage to specificity-focused decision-
making. This flexibility promotes collaboration among
biochemists, microbiologists, and clinicians while reducing
diagnostic waste by minimizing unnecessary urine culture
requests.

The aim of this study was to develop and externally validate
a robust, interpretable ML-based LDSS to predict urine culture
outcomes in patients with suspected UTIs. By standardizing
reflective testing practices, the LDSS supports interdisciplinary
decision-making, optimizes resource utilization, and ultimately
contributes to rational antibiotic prescribing across healthcare
settings.

Materials and Methods

Study Population/Subjects

This study was conducted at izmir Tepecik Training and
Research Hospital. Ethical approval was obtained from the
University of Health Sciences Tiirkiye, izmir Tepecik Training
and Research Hospital Non-Interventional Research Ethics
Committee prior to study initiation (approval number:
2025/02-05, dated: 10.03.2025).

Eligible participants were adults aged >18 years who presented
as inpatients or outpatients to the main hospital between
January 1, 2014, and December 31, 2024, or to its affiliated
hospital between January 1 and February 28, 2025. Inclusion
criteria required patients to undergo their first urinalysis,
complete blood count (CBC), and urine culture, ordered by a
specialist physician based on clinical indication.

The study cohort included both culture-positive and culture-
negative cases, capturing the full spectrum of patients for
whom urine cultures were clinically indicated. Consequently,
the dataset reflects real-world test-ordering practices rather
than a biased subset of confirmed infections.

Patients were excluded if they had incomplete test results,
missing sub-parameters, non-bacterial pathogens in their
urine culture, delays exceeding one hour between urine
sample collection and laboratory registration, delays exceeding
30 minutes for hemogram samples between phlebotomy and
laboratory receipt, or a history of antibiotic treatment prior to
testing.

(CBC analyses were performed using UniCell DxH 800 analyzers
(Beckman Coulter, Miami, FL, USA) from 2014 to 2020 and XN-
2000 systems (Sysmex Corporation, Kobe, Japan) from 2020
onward. Urinalysis tests were conducted using fully automated
analyzers across three periods: H-800 and FUS-200 systems
(Dirui Industrial Co., Changchun, China) from 2014 to 2018; BT

Uricell 12801600 (Bilimsel Products, izmir, Tiirkiye) from 2018
to 2021; and U2610-U1600 (Zybio Corporation, Chongging,
China) from 2021 onward.

Midstream urine samples were collected in sterile containers
simultaneously with urinalysis and processed according
to standard microbiological procedures. Samples without
detectable bacterial growth after 24 hours were incubated for
an additional 24 hours; if no growth was observed, the result
was reported as “no growth”.

Reagents and calibrators for urinalysis were obtained from
authorized manufacturers and were certified and registered
products. Quality control materials were sourced from Bio-
Rad (California, USA). All results were reviewed and validated
for accuracy and reliability by both a clinical biochemistry
specialist and a clinical microbiology specialist.

Study Design

Patient identifiers were anonymized, and a dataset comprising
age, sex, hemogram, urinalysis, and urine culture results from
55,385 patients (main hospital: 52,854; affiliated hospital:
2,531) was imported into Microsoft Excel 2021 (USA).

Symptom data were not included, as such information is not
routinely recorded in LIS. In standard laboratory workflows,
test orders are typically accompanied by preliminary diagnoses
or ICD codes from the requesting physician, but detailed
patient symptoms are not captured. Accordingly, the predictive
model in this study was developed exclusively on structured
laboratory data, aiming to forecast urine culture outcomes
rather than to establish a clinical diagnosis of UTI.

After applying exclusion criteria, the final dataset included
49,720 patients, with an external validation cohort of 2,203
patients. The dataset was subsequently transferred to Python
(version 3.13.1, USA) for ML analysis.

Following data cleaning, the main dataset was divided into
training, internal test, and external test subsets using a
60:20:20 stratified sampling strategy based on the binary
target variable, ensuring preservation of class distribution.

Patient flow throughout the study is depicted in Figure 1,
in accordance with the Standards for Reporting Diagnostic
Accuracy guidelines.

Data Preprocessing and Training of ML Algorithms

Patient data were initially exported from the LIS into Microsoft
Excel. Hemogram values and flow cytometry parameters from
urinalysis were used directly due to device standardization.
Semi-quantitative dipstick results—reported by urinalysis
analyzers as categorical values (e.g., “+,” “++,” “+/-,” “trace”)—
were converted into numerical equivalents (e.g., “++” mapped
to 2; “trace” standardized to 0.5) to ensure quantitative
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Figure 1. Standards for Reporting Diagnostic Accuracy flow diagram of study participants and urine culture testing.

consistency. Variables describing urine color and appearance
were also recategorized by grouping similar classifications (e.g.,
light yellow to dark red; clear to very cloudy) to standardize the
dataset.

Urine culture results were binarized as follows: samples with
>10,000 colony-forming unit (CFU)/mL bacterial growth were
defined as positive (label = 1), while samples with <10,000
CFU/mL, mixed flora, colonization, yeast, or no growth were
classified as negative (label = 0).

The 10,000 CFU/mL threshold was selected based on recent
evidence and the 2024 European Association of Urology
guidelines, which acknowledge that lower colony counts
(>103-10* CFU/mL) may be clinically significant in symptomatic
or catheterized patientsl. Nelson et al.l'”! demonstrated
that these lower thresholds preserve diagnostic accuracy for
symptomatic UTIs, supporting their use in reflective testing
workflows. Additionally, Werneburg et al.l'® showed that
urinalysis parameters reliably predict the absence of infection
at this threshold, reinforcing its clinical validity. This definition
also aligns with our institutional microbiology reporting
standard for significant bacteriuria.

Yeast and colonization findings were labeled as negative
(label = 0) based on established microbiological evidence
and laboratory reporting standards. In urinary cultures, the
presence of Candida species typically reflects colonization
or contamination rather than true infection, even at colony
counts exceeding 10°=10°> CFU/mL, unless accompanied by
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compatible clinical symptoms!'. Classifying yeast as negative
prevented false-positive propagation in the LDSS and improved
the model’s clinical specificity.

Similarly, cases labeled as “colonization”—including cultures
with mixed flora or non-uropathogenic organisms—were
considered negative. This approach aligns with standard
microbiology practice, where such findings are reported as
clinically non-significant. Although CLSI M100 (2025) does
not define colony-count thresholds for colonization or
candiduria, its terminology guided our categorization strategy.
This interpretation reflects real-world laboratory workflows,
ensuring that the LDSS mirrors standardized reporting logic
and remains generalizable across institutions?.

The cleaned dataset was transferred to Python for ML analysis.
To enhance model robustness and address class imbalance,
a stratified data partitioning scheme was applied, allocating
60% of samples to training and 20% each to internal and
external testing. The dataset exhibited natural imbalance, with
22.4% culture-positive and 77.6% culture-negative samples.
To mitigate majority-class bias, feature standardization and
rebalancing strategies (class_weight="balanced’) were applied
uniformly across all classifiers.

As a preliminary check, a baseline LR model was trained
and evaluated across all data splits. Receiver operating
characteristic — area under the curve (ROC-AUC) scores (=0.74,
0.73, 0.73 for training, internal, and external sets, respectively)
and F1 scores (0.55, 0.54, 0.54) demonstrated consistent
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generalization without evidence of overfitting or imbalance-
driven inflation. The close alignment of these baseline metrics
confirmed that stratified sampling preserved class proportions
across all subsets (=22.4% positive vs. 77.6% negative), ensuring
reliable model development.

ML Model Selection and Development

The results confirmed that the methodological setup—
including stratified sampling and proportional weighting—
effectively mitigated class imbalance and provided a reliable
foundation for model development. LR was used not as a
primary model, but as a diagnostic tool to verify dataset
integrity and the fairness of the training process?'.

Model development was performed in Python 3.13.1 using
widely adopted libraries and workflows. Seven ML algorithms
were evaluated for their suitability with the dataset and their
potential effectiveness in predicting urine culture outcomes:
RF, XGBoost, LightGBM, CatBoost, LR, Artificial Neural Network
(ANN), and K-Nearest Neighbors (KNN).

Variables included in the analysis:
» Demographic: Age, sex

* Hemogram: White blood cell, neutrophil, lymphocyte,
monocyte, eosinophil, basophil, hemoglobin (HGB)

* Urine Dipstick: Leukocyte esterase, nitrite, glucose, protein,
pH, erythrocyte, bilirubin, urobilinogen, ketone

* Other Urinalysis: Urine color, urine density, appearance

e Flow Cytometry: Bacteria count, cylinder, yeast, urine
leukocyte count

Data preprocessing, model training, evaluation, and
visualization were conducted using open-source Python
libraries:

e Data Processing and Analysis: pandas (v2.2.2), numpy
(v2.0.2), optuna (v4.3.0)

* ML Model Development: scikit-learn (v1.6.1), XGBoost
(v2.1.4), lightgbm (v4.5.0), catboost (v1.2.8), tensorflow (v2.10),
keras (v2.10), torch (v2.6.0 + cu124)

e Model Evaluation and Visualization: matplotlib (v3.10),
seaborn (v0.13.2), scipy.stats (v1.9), sklearn.metrics (v1.2), SHAP
(v0.47)

Detailed hyperparameter optimization procedures, including
search strategies and parameter configurations for each model,
are provided in the Supplementary Table 1. Each model was
retrained using the optimal hyperparameters identified during
tuning. Final model evaluation was based on F1 and ROC-AUC
scores derived from the internal test set.

Performance Evaluation

Performance evaluation was conducted using standard
Python-based data science libraries. The modeling process was
assessed comprehensively through internal cross-validation,
hyperparameter tuning, and multiple performance metrics.

Classification Performance Metrics: Model discrimination and
predictive capability were evaluated using:

* AUC-ROC
* Area under the precision-recall curve (AUC-PR)
* Sensitivity and Specificity

* Positive predictive value (PPV) and negative predictive value
(NPV)

* Positive likelihood ratio (PLR) and negative likelihood ratio
(NLR)

* F1 score

Model Interpretability Metrics: To enhance clinical transparency
and foster trust in algorithmic decisions, interpretability was
assessed using:

* Feature-Importance metrics
* SHAP graphs

This  multidimensional evaluation approach balances
predictive performance with explainability, providing a robust
framework for forecasting urine culture outcomes based solely
on laboratory and demographic data.

Development of the LDSS

The LDSS was built using the best-performing ML model
identified during model selection. SHAP analysis was employed
to select the ten most informative features, and a simplified
model was retrained using only these variables. The reduced
model maintained performance comparable to the full model,
supporting its suitability for practical implementation.

Instead of the default probability threshold of 0.5, an
optimized threshold based on Youden’s | statistic was applied
to improve sensitivity and minimize missed infections. Each
selected feature was then converted into a binary indicator
using individual cut-points derived from ROC analysis, enabling
construction of a straightforward cumulative score.

Feature-importance values were normalized to derive
clinically interpretable weights. Highly influential predictors
received slightly higher weights, while moderately informative
features were scaled conservatively to balance performance
with interpretability. The final scoring system was recalibrated
using internal data and externally evaluated, demonstrating
preserved sensitivity and specificity. This streamlined,
transparent design ensures that the LDSS is suitable for routine

use within laboratory workflows.
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Table 1. Baseline characteristics of the study population, including demographic, clinical, and laboratory variables.

Main dataset  Training set Internal test set External test set ~ Validation set p-value®
Characteristics® Unit (n=49,720) (n=29,832) (n=9,944) (n =9,944) (n =2,203) (Main dataset vs.

mean = SD mean = SD mean = SD mean = SD mean + SD validation set)
Age 38.28 £26.85 38.07 £26.81 38.89 + 26.99 38.29 £ 26.83 4392 +2853 <0.05
Male Years 39.69 £2820 3933 £2812 40.09 £ 28.39 40.37 = 28.26 48.04 £ 2838 <0.05
Female Years 374112596 37.29+2595 38.17 £ 26.07 37.03 £ 25.85 41.23 £28.33 <0.05
Gender 0.152
Male n (%) 18,871 (38.0%) 11,358 (38.1%) 3,766 37.9%) 3,747 (37.7%) 870 (39.5%)
Female n (%) 30,849 (62.0%) 18474 (61.9%) 6,178 (62.1%) 6197 (62.3%) 1333 (60.5%)
WBC x10° cells/L  8.47 £4.63 8.514.91 8.4 £ 3.86 8.45 + 4.47 8.45+3.48 0.795
Neutrophil x10%cells/L  5.1+34 511+ 3.34 5.05+3.13 5.11 £ 3.81 518 £ 3.14 0.244
Lymphocyte x10° cells/L  2.45+2.82 247 £ 3.27 242 +1.97 243 +1.99 2.36 +1.26 <0.05
Monocyte x10° cells/L  0.68 £ 0.85 0.68 + 1.01 0.68 £ 0.68 0.67 +£0.37 0.67 +£0.29 0.168
Eosinophil x10% cells/L 0.2 £0.25 0.2 £0.25 0.2 £0.25 0.2+0.24 0.19£0.19 <0.05
Basophil x10° cells/L  0.04 £0.06 0.04 £ 0.06 0.03 £0.05 0.04 +0.07 0.04 +0.03 1.000
HGB g/dL 12.26 £ 1.91 1226 £ 1.9 12.27 £1.92 12.27 £1.91 12.56 = 1.98 <0.05
Efr?;eer)ia count JHPF v Do 3393412089 3324+118.07 417 +157.49  <0.05
LYM (urine) JHPF s i 5232427964 53.53+£293.02  64.28+3242 0.124
Yeast /HPF 3.85+133.83 504+£170.15 1.95%+ 36.1 2213723 3.13 £5543 0.587
Mucus [HPF 1132 +£30.73 1134 +30.69 10.97 £ 28.36 11.62 = 33.03 2214 £56.43 <0.05
Cylinder /HPF 0.04 £0.22 0.04 £0.22 0.04 £0.23 0.05+0.23 0+0 <0.05
Density . goessxLOVO2E qp16955823 10t69+822  100%0F  <os
pH - 59+ 0.81 591+ 0.82 5.89 + 0.81 59+ 0.81 6.05 = 0.52 <0.05
Urine culture <0.05
Positive n 11,156 (22.4%) 6,694 (22.4%) 2231 (224%) 2,231 (22.4%) 403(183%)  1.000
Negative n 38,564 (77.6%) 23,138 (77.6%) 7,713 (77.6%) 7,713 (77.6%) 1800 (81.7%)  1.000

2Categorical variables were not included in this table. ®Continuous variables were compared using Welch’s t-test, and categorical variables were analyzed with Pearson’s chi-square

test. A p-value <0.05 was considered statistically significant.

Validation of the LDSS

An independent validation dataset, obtained from an affiliated
hospital within the same healthcare network, was used to
assess the generalizability and robustness of the LDSS through
temporal validation. This temporally separated retrospective
dataset was entirely independent of all model development
phases, including training, feature selection, and score
construction.

Performance of the reduced 10-variable RF model and the
three derived scoring systems was evaluated within this
separate clinical environment. Standard classification metrics
were computed and compared with those from the original
external test set, providing insight into the system’s real-world
applicability.

22

The validation strategy adheres to recommendations from the
International Federation of Clinical Chemistry and Laboratory
Medicine for evaluating diagnostic tools using independent
datasets. This approach strengthens the clinical credibility
of the LDSS by demonstrating reproducibility across diverse
healthcare settings.

Statistical Analysis

Descriptive statistics are presented as means + standard
deviations (SDs) for continuous variables and as frequencies
with percentages for categorical variables. Comparative
analyses between the development and validation datasets
were conducted using:
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* Student’s t-test for normally distributed continuous variables

* Welch’s t-test for continuous variables with unequal variances
or sample sizes

* Pearson’s chi-square test for categorical variables

e Z-tests for proportions and McNemar's test for paired
categorical outcomes, particularly for comparing model
performance metrics across datasets

These statistical comparisons were used to evaluate diagnostic
consistency and identify significant differences in classification
outcomes, providing insight into the reproducibility and
robustness of the LDSS across diverse clinical settings.

All p-values were two-sided, with statistical significance defined
as p < 0.05. Analyses were conducted using Python 3.13 and its
associated statistical packages.

Dataset Description and Data Preprocessing

The analytical cohort comprised 51,923 patient encounters,
including 49,720 records from the main institutional database
and 2,203 from an affiliated tertiary center. The validation
cohort was enriched with inpatients from high-acuity units,
such as Palliative Care and Gynecologic Oncology, and was
specifically used to assess the external validity of the LDSS.

The validation cohort demonstrated significantly higher age
across all demographic strata (total: 43.92 vs. 38.28 years; males:
48.04vs.39.69; females: 41.23 vs. 37.41; all p < 0.05). Hematologic
comparisons revealed statistically significant reductions in
lymphocyte count (LYM) and eosinophil count, accompanied by a
modest but significant increase in HGB levels (p < 0.05).

Among urinalysis variables, the validation group exhibited
higher bacterial counts, increased mucus presence, and
elevated pH levels, whereas urine specific gravity and cylinder
counts were lower (p < 0.05 for all). No significant differences
were observed in white blood cell (WBC), neutrophil, monocyte,
or basophil counts, nor in leukocyte counts, yeast presence,
or gender distribution (all p > 0.05). Although the proportion
of urine culture-positive cases was numerically similar (22.4%
vs. 18.3%), this difference reached statistical significance (p <
0.05), potentially reflecting distinct microbiologic or clinical
characteristics in the validation population.

Overall, these findings indicate that while the two datasets
are broadly comparable, the validation cohort exhibits
distinct demographic and laboratory profiles, likely due to its
inpatient composition. These differences should be considered
when interpreting LDSS performance in more complex clinical
settings. Detailed summary statistics and p-values for each
variable are provided in Table 1.

Hyperparameter Tuning

Each ML model was trained and optimized to achieve
optimal performance on our dataset. Final hyperparameter
configurations, tailored to the structure of each algorithm, are
summarized in the Supplementary Table 2.

Performance Metrics of ML Models

The performance of seven ML models was evaluated using both
internal and external test datasets. Ensemble-based methods—
RF, CatBoost, and XGBoost—consistently demonstrated high
accuracy (=0.929) and F1 scores (>0.83) across both datasets,
highlighting their robustness for clinical prediction tasks.

On the external test set, RF outperformed all other models,
achieving the highest ROC-AUC (0.956) and PR-AUC (0.907),
indicating superior discrimination and precision-recall trade-
off. CatBoost achieved the highest sensitivity (0.771) while
maintaining balanced performance across other metrics.

KNN demonstrated exceptional specificity (0.988) and PPV
(0.945) in the external set, making it particularly effective
for ruling in cases. Conversely, LR, while computationally
efficient, showed the lowest sensitivity and F1 scores, limiting
its diagnostic utility.

Performance metrics from the external dataset closely mirrored
those of the internal test set for all models, reinforcing their
generalizability and stability. Comprehensive statistics for both
datasets are provided in Table 2 and Figure 2.

Among all evaluated algorithms, RF exhibited the most
consistent and highest overall performance, with an internal
ROC-AUC of 0.952 (95% confidence interval [Cl]: 0.948-0.956)
and an external ROC-AUC of 0.956 [95% Cl: 0.952—0.960], along
with strong PR characteristics.

Given its superior accuracy, consistent generalizability, and
interpretability, RF was selected as the core algorithm for
integration into the LDSS. SHAP analysis was then performed
on the final model to provide insight into the individual
contribution of each feature to the predicted outcomes.

SHAP Analysis of the Optimal RF Model

Model interpretability was improved using SHAP, which
quantifies the contribution of each feature to the predictions
generated by the final RF model. As shown in Figure 3, the
most influential features were

* Bacteria_Count (SHAP value: 0.061)
* Urine_Leu_Count (0.055)
* Nitrite (0.052)

» Age and Leukocyte Esterase (both 0.041)
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Table 2. Classification performance metrics of the ML models, including accuracy, sensitivity, specificity, and AUC.

Model Sensitivity Specificity PPV NPV Accuracy F1 score ROC-AUC PR-AUC
Internal test set
RF 0.758 0.985 ?6.993;3— ?6.993;9— 0954 (%?83286— 0.952 ?6?89971—
0741-0.776)  (0982-0.987) g4 0.939) (0929-0.938) sy (0948-0.956)  g03,
Y CBoost 0.768 0.976 ?6?80;9_ ?0'?93360_ 0.929 ?0'8;06_ 0.930 ?6?86514—
0751-0784)  (0973-0.979) g 0.641) (0925-0.934) g 0925-0.935)  goepy
L A 7 S S SR AR ML Gy
(0664-0.699)  (0.968-0.976) 5o 0.919) (0.900-0.913)  ery 091-0.921) ooy
CatBoost 0.764 0.980 ?5;087_ ?0'993350_ 0.932 ?0‘8;242_ 0.930 ?0'?86514_
(0747-0784)  (0977-0.983) 530y 0.540) (0927-0.937) g 0925-0.935)  goep
LR 0350 0.969 ?(5?7(3358— ?6?83380— 0.850 ?6%485(;— 0.7% ?6?59833—
(0330-0370)  (0965-0.973) 50y 0.346) (0823-0837) (5 (0782-0.798) '3y
ANN (MLP) 0.501 0.943 (06?7?)1877 ?(;?887157 0.857 ?0622717 0.644 ?6%358897
(0541-0.582)  (0.937-0.947) s 0.389 (0850-0.864) ey (0837-0.851) ooy
AN 0723 0.984 ?0‘?92197_ ?0‘?92159_ 0.925 ?0881 031 ) 0.947 36?80937—
(0705-0.743) ~ (0981-0.987) (540 0.930) (0920-0.931) o 0943-0.951)  ('g00)
RF (with top 10 0.769 0.981 0.924 0.936 0.934 0.8397 0.947 0.890
variables)* (0.761-0.777)  (0.979-0.984) 5)%9;0{;‘ 5)99%‘311)‘ (0.929-0.939) g%%z)’ (0.944-0.952) 5)%8986‘;’
External test set
oF 0.76 0.987 ?()‘?31_ 0.935 0.936 ?0‘?;2297 ?6?95562_ ?6?900717
(0744-0.778)  (0.984-0.989) sy (0929-0.94) (0.931-0941) oy 099 0.913)
XGBoost 0.767 0.950 36?9107& 36?93360— 0.952 ?6?832i— 0.952 ?6?87771—
(0748-0784)  (0977-0.983) (53¢ 0.942) (0928-0.938) (oo 0927-0.937) (g3
LightGBM 0.650 0976 ?d§89727— ?09;02— 091 ?6.777662— 0919 ?6?3037
(0:666-0.704)  (0.972-0.979) g0, 0.921) (0.905-0.916) g0 0914-0924) ;)
CatBoost 0771 0.92 ?0992141— ?6?933(31— 0.954 ?6.5;;207— 0.929 ?6?87658—
(0754-0.790)  (0979-0.985) (53¢ 0.942) (0929-0.939) o) 0924-0934) ey
o e e e ew T
(0321-0358)  (0.964-0.972) e 0.842) (0819-0.834) e (0785-0.801) &)
ANN (MLP) 0.965 0957 ?0772020— ?6?88714— 0.854 ?(;.663148— 0.816 ?6.72978—
(0544-0.585)  (0932-0.943) 5 0.388) (0847-0.861) ey 0839-0853) o
A N A v S AL LAY
(0700-0.738)  (0985-0.990) 5o 0.929) (0923-0.933) o3 0943-0.951) oy’

*Reduced model including only the top 10 predictors selected by SHAP analysis: bacterial count in urine, urinary LYM, urinary nitrite test, patient age, leukocyte esterase activity
in urine, HGB concentration, gender, LYM, urine density, and urinary erythrocyte count
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Figure 2. ROC and precision-recall PR curves illustrating the predictive performance of ML models.

PR, precision-recall.

These features correspond with well-established clinical
markers of UTI, supporting the biological plausibility of the
model.

Features with moderate importance included HGB, Gender, and
LYM, with SHAP values ranging from 0.017 to 0.030. Features
such as Bilirubin, Urobilinogen, and Ketone contributed
minimally, each with SHAP values below 0.003.

Overall, the feature ranking confirms that the model primarily
relies on clinically relevant variables, enhancing transparency
and supportingitsintegration into laboratory decision-making.

Performance Metrics of the LDSS

A simplified RF model, built using the top 10 SHAP-derived
features, maintained performance comparable to the full-
feature model (ROC-AUC: 0.952 vs. 0.947; PR-AUC: 0.897 vs.
0.890), supporting its suitability for clinical implementation
(Table 2). Based on these variables, three complementary
scoring systems were developed to address distinct operational
needs within laboratory workflows (Table 3):

» Model-Prioritized Score: Retains the behavior of the original
ML model by assigning weights directly from normalized SHAP

values. This version is ideal for institutions seeking high overall
discrimination while remaining faithful to the underlying
algorithm.

» Dual-Optimization Score: Adjusts feature weights to balance
sensitivity and specificity, as reflected in stable metrics across
both test datasets (Table 4, Figure 4). This score is intended for
laboratories aiming to minimize both missed infections and
unnecessary cultures.

* SAFE-Score: Optimized for high sensitivity and NPV, this
score is suitable for safety-critical settings where missing true
infections is unacceptable—such as high-acuity units, elderly
populations, or immunocompromised patients. Its higher
sensitivity comes at the expense of specificity, highlighting
the trade-off between diagnostic conservatism and resource
utilization.

Across all scoring systems, sensitivity remained consistent in
external and independent validation cohorts, while specificity
varied according to prioritization strategy (Table 4). Together,
these tools provide laboratories with flexible options that can
be tailored to local clinical priorities, test-ordering practices,
and antimicrobial stewardship goals (Figure 4).
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Figure 3. SHAP summary plot showing variable importance in the RF model.

Table 3. Confusion matrix—derived performance metrics of the ML models, including sensitivity, specificity, PPV, and NPV.

SAFE-Score
Threshold Normalized glr?gfilt-ized Dual- (System fi fi
Feature Py Optimization (sensitive Scientific justification
binarization SHAP value gcts)tr;:m1 Score? assessment for
Y exclusion)?

Bacteria count  >20, n 0.175 0.20 0.32 0.89 Major diagnostic marker for infection;
emphasized clinically.

Urine LYM ~25.1n 0157 018 022 0.05 Strongly correlates with infection; slightly
boosted for sensitivity.

Nitrite - 0147 017 015 0.77 Positive nitrite is a dl(egt indicator of gram-
negative bacterial activity.

Age 265 years 0118 015 023 042 Increased risk in elderly population (>65
years).

Leucocyte =0 0116 014 013 0.82 Blochem|cgl indicator of leukocytes;

esterase moderate importance.

HGB <12 0.085 010 012 0.71 Low HGB ‘Igvels linked to increased infection
susceptibility.

Gender =1 (Female) 0.062 0.08 0.04 0.06 Higher infection prevalence anatomically in
females.

LYM <15 0.051 0.06 0.1 0.65 Low lymphocyte count indicates
immunosuppression risk.

Density ~1020 0.048 0.05 0.09 0.03 Higher urine density occasionally correlates
with infection.

Urine ~0 0.047 0.05 01 0.77 Presence ma}/‘suggest urinary tract pathology

erythrocyte but less specific.

The first system was developed using model-derived, data-driven thresholds and weighting. *The second system was designed to optimize both sensitivity and specificity,
achieving balanced classification performance. *The third system prioritized minimizing false negatives, emphasizing maximum sensitivity and NPV.
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Table 4. Performance metrics of the LDSS evaluated using both external test and validation datasets.

A. Results from the external test set.

Method Sensitivity (%) Specificity (%) PPV NPV PLR NLR Accuracy  F1score ROC-AUC PR-AUC
o 5331 8707 395 0.51 79.1 54.59 70.88 54.62
gﬂygfeﬂ]f rioritized Score 5553‘9;7_57 %) ?855‘8033_86 s (120 (B630- (o~ (049~ (B31- (257~ (6758~ (5071
: : : : 5532)  87.81) 422 054  79.91) 56.60)  74.28) 57.71)
L 44.49 2.77 0.46 52.75
Dual-Optimization 64.77 76.62% 88.26 73.96 70.70 >4.63
Score System? (62.76-6672) (75.67-77.55 (4279- (8747— (47— (044 (309 (51.03- (6870- (5272
46.20)  89.01) 3,07 0.49)  74.82) 54.46) 72.70) 56.72)
9534 20.29% 2570 9377  1.20 023 3713 40.49 57.81 60.52
SAFE-Score System? (94‘ 38-96.14) (19‘ 41121 20) 4.77- (9251-  (1.03- (0.21- (36.18- (39.44—  (57.80- (55.55—
' ’ ’ ' 26.66) 94.83) 1.136) 0.25) 38.08) 41.55) 57.83) 65.58)
B. Results from the validation test set.
Method Sensitivity Specificity PPV NPV PLR NLR Accuracy  F1score ROC-AUC PR-AUC
L 4647 8987 381 050  79.80 51.51 71.31 34.80
Model-Prioritized Score 5795 8478 (43.09- (8874— (33— (044 (78.06 (4730  (68.60 (31.05
S Stem4 - . . — . — - — o — . — N — N — N —
Y (53.00-62.78)  (83.04-8641) 4949,  90g5)  437)  056)  8146) 5537)  73.94) 38.61)
o 3919 9092 283 044  74.63 49.36 71.40 32.35
Dual-Optimization 06.50 7048 (3665 (8971— (54— (038 (7275 (4586~  (68.82 (29.00
Score System® — _ : ST I el e o ol el
Y (61.70-71.07)  (74.44-7842) 4 80)  92.00)  3.15) 0.50)  76.43) 53.01)  73.94) 35.66)
SAFE-Score System® 987 2430 (2221‘2623 ?953.41(11 (11‘2251 362114 (3375;4308 (3363 0486 (5595 51%1 (222605 5
(92.26-96.79)  (2233-2636) 2543 gg95)  130) 032  39.46) 3863  61.03) 24.01)
TP =1,248; TN = 6,620; FP = 1,093; FN = 983. 2TP = 1,445; TN = 5,910; FP = 1,803; FN = 786. *TP = 2,127; TN = 1,565; FP = 6,148; FN = 104.
TP = 237; TN = 1,521; FP = 273; FN = 172, 5TP = 272; TN = 1,372; FP = 422; FN = 137. °TP = 388; TN = 436; FP = 1,358; FN = 21.
Recommendation:

(Minimize False Negatives)

[Avoid missing infected patients

P

. .. T [ Need to balance patient safet;
2
What is the Clinical Priority? e Pt Ao

\

Avoid excessive culture cost:
(accept some FN)
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False Negatives = 21
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Figure 4. LDSS workflow illustrating selection criteria based on diagnostic accuracy and operational priorities.

ML-based approaches offer substantial potential for the early
diagnosis of UTIs. With the rising prevalence of antibiotic
resistance, reducing unnecessary antibiotic use has become
increasingly critical. Recent studies demonstrate that ML
models improve diagnostic accuracy by integrating clinical
symptoms, medical history, and urinary biomarkers, rather
than relying solely on culture results®.

Moreover, Al-driven decision-support systems can reduce
diagnostic workload in hospitals, although their clinical
validation remains limited™. Urinary biomarkers, such as
nitrite and leukocyte esterase, exhibit high sensitivity for UTI

diagnosis, yet their integration into ML models is essential to
mitigate false-positive results®?]. Al-assisted methodologies are
expected to be particularly beneficial for early detection of
recurrent UTIs and multidrug-resistant pathogens, potentially
improving patient outcomes and guiding more precise
therapeutic interventionsi?>24.,

In this study, we evaluated the performance of multiple
ML models in predicting urine culture outcomes and
assessed their clinical applicability using explainable Al (XAl)
techniques. Validation on a demographically and clinically
distinct inpatient cohort further demonstrated the robustness
and real-world adaptability of the LDSS. The incorporation
of XAl enhanced interpretability, providing insight into the
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decision-making process and supporting potential integration
in complex healthcare settings.

The LDSS was developed using all physician-ordered urine
culture requests, including both culture-positive and culture-
negative cases. Consequently, the dataset reflects the complete
real-world distribution of suspected UTIs encountered in
laboratory practice, enabling the model to learn discriminative
patterns for both infection and non-infection samples.
Importantly, the LDSS functions solely as a laboratory-level
decision-support tool rather than a diagnostic system. Its
predictions are limited to variables available in the LIS and are
intended to complement, not replace, physicians’ diagnostic
judgment.

Gender and Age-Related UTI Incidence

In our study, UTIs were significantly more common in female
patientsthanin males. Thisfindingalignswith existingliterature
and reinforces the well-established notion that women are
more susceptible to UTIs due to urogenital anatomy, hormonal
fluctuations, and lifestyle factors. Schmiemann et al.lreported
that UTI incidence in women is four to five times higher than
in men. Similarly, Hooton et al.” identified a higher risk in
women attributable to a shorter urethra and variability in
periurethral microbial flora. Additional risk factors include
age, postmenopausal hormonal changes, and a history of
recurrent infections.

Age also emerged as a critical determinant, with UTI incidence
progressively increasing—particularly among women aged
65 years and older. While Foxman et al.?! reported peak
incidence in women aged 15-29, with a secondary rise in
postmenopausal groups, and Mgller et al.l"! linked estrogen
depletion after age 50 to heightened susceptibility, our
study identified older age (=65 years) as an independent
risk factor for positive urine culture in the LDSS model. This
finding underscores the importance of incorporating age as a
predictive variable and reflects the growing burden of UTIs in
elderly populations.

Performance of ML Models

The predictive performance of the models developed in
this study is consistent with, and in several cases surpasses,
previously reported ML approaches for UTI prediction. Among
the algorithms tested, ensemble-based models—particularly
RF and CatBoost—demonstrated consistently high accuracy,
balanced sensitivity and specificity, and favorable F1 scores.
Compared to prior models reported by de Vries et al.?”! and
Flores et al.”l, our RF model showed superior performance
across multiple evaluation metrics. Likewise, our CatBoost
implementation outperformed the model described by
Mancini et al.®!, which exhibited lower AUC and F1 values in a
comparable clinical context.
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Tree-based gradient boosting methods, such as XGBoost and
LightGBM, also performed robustly and yielded results similar
to high-performing models developed by Choi et al.’! and
Lin et al.®¥ indicating strong generalizability across diverse
patient populations. In studies by Dhanda et al.®! and Taylor et
al.B% RF and XGBoost models similarly demonstrated superior
discriminatory capacity, achieving AUC-ROC values of 0.85 and
0.90, respectively.

The KNN model achieved precision metrics comparable to prior
studies; however, its limited interpretability may constrain
clinical adoption™. Conversely, LR, while highly interpretable,
exhibited lower sensitivity and F1 scores—consistent with
Ramgopal et al.' where the model tended to overpredict
positive cases, reducing precision. ANN (MLP) models, though
commonly employed in UTI prediction studies, demonstrated
moderate performance in our dataset, slightly below previously
reported benchmarks.

Overall, these results reinforce the value of ensemble ML
methods in the context of a LDSS for UTI prediction. They offer
high predictive accuracy and consistent performance across
internal and external validation cohorts, supporting their
applicability in real-world clinical settings.

Several studies have investigated ML—based urine culture
prediction, varying in complexity and generalizability.
Seheult et al.B" developed a decision-tree algorithm across
multiple institutions to identify urinalysis predictors of
culture positivity, reporting ROC-AUC values of approximately
0.78-0.79; however, their study lacked external validation
and interpretability assessment. By comparison, our model
achieved higher discrimination during development (ROC-
AUC = 0.94-0.96) under cross-validation. Following conversion
into a simplified score-based LDSS, real-world performance
remained consistent (ROC-AUC ~ 0.70-0.72; F1 =~ 0.50—
0.55). This decline reflects the expected trade-off between
model complexity and clinical interpretability, as the LDSS
was designed for practical integration into LIS rather than
maximizing algorithmic precision?".

Sergounioti et al.P4 applied ensemble classifiers, including
RF and XGBoost, to real-world laboratory data, achieving
AUROC values of 0.79-0.82. However, their models combined
clinical and laboratory parameters and lacked transparent
feature-importance analysis. In contrast, our LDSS relied
solely on structured laboratory data, achieved comparable
discrimination (0.70-0.72), and preserved interpretability and
reproducibility through rule-based score calibration via the
Model-Prioritized and Dual-Optimization systems.

Sheele et al.P¥ investigated bacteriuria prediction in an
emergency-department cohort using mixed clinical-laboratory
features, yielding AUC-ROC values of 0.86-0.93 depending
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on the CFU/mL threshold. While their results were strong in
a high-acuity population, our laboratory-only LDSS achieved
comparable sensitivity (up to 95%) in routine diagnostic
settings, highlighting its potential as a front-end decision-
support tool for reflex culture testing.

Collectively, previous studies demonstrated the feasibility of
ML-assisted urine culture prediction but often emphasized
algorithmic performance over interpretability and clinical
applicability. The presentstudyaddressesthisgap byestablishing
a transparent, externally validated, and operational LDSS
framework that maintains clinically acceptable performance
while remaining fully interpretable and implementable within
routine laboratory workflows.

Explainability and Feature Importance

SHAP-based feature-importance analysis in our study revealed
a variable ranking that aligns with and extends existing
literature. The most influential predictors were bacterial
count, urine leukocyte count, nitrite, age, and leukocyte
esterase. These findings are consistent with the meta-analysis
by Devillé et al.®l, which reported that combining nitrite and
leukocyte esterase yielded a sensitivity of 88% and specificity
of 98% for UTI diagnosis. Similarly, Lachs et al.B* demonstrated
that integrating these parameters with clinical symptoms
significantly improves diagnostic accuracy.

Notably, our model also identified HGB levels, sex, and LYMs as
important features with relatively high SHAP values, suggesting
sensitivity to broader systemic or demographic factors that
may influence infection risk. This aligns with Zhao et al.B%,
who reported age and sex among the top predictors in a
SHAP-based post-urostomy UTI risk model, and Wang et al B¢,
who found that systemic inflammatory markers and age were
highly important in predicting post-surgical UTIs.

The predominance of microscopic urinalysis variables—
particularly bacterial and leukocyte counts—over clinical or
demographic features underscores the model’s responsiveness
to diagnostic biomarkers. This differentiates our approach
from models such as Lee et al.Pl, which focused on predicting
antimicrobial resistance patterns but also leveraged SHAP
analysis for interpretability.

Recent literature highlights the limitations of reflexive urine
culture testing in the absence of clinical context. Munigala
et al.B¥ and others have shown that reflex algorithms
triggered by markers like leukocyte esterase or nitrite may
reduce test volume but compromise diagnostic precision
when symptom data are unavailable. Fakih et al.B¥ similarly
argue that urinalysis alone is insufficient for accurate UTI
diagnosis in asymptomatic patients, risking overdiagnosis and
overtreatment.

Our study addresses the diagnostic gap through a reflective
developed solely using structured laboratory data. Because
symptom data are typically absent from LIS, the LDSS optimizes
culture utilization within real-world laboratory constraints.
Rather than functioning as an autonomous decision-maker
or reflex trigger, the system serves as a reflective tool,
providing SHAP-based analytical insights to support laboratory
physicians’ expert interpretation.

This reflective framework promotes standardized testing
and interdisciplinary consultation. In equivocal cases, LDSS
outputs can facilitate dialogue between laboratory and
clinical teams, helping reconcile test reduction with diagnostic
safety. Such an approach advances rational microbiological
testing and provides a scalable model for clinician-laboratory
collaboration!,

The LDSS demonstrated robust predictive performance
across internal and external datasets, supporting its seamless
integration into routine laboratory workflows and reflective
testing processes. The system is designed not to replace culture
testing but to prioritize it based on evidence-driven probability,
maintaining diagnostic stewardship.

To enhance accessibility for readers from diverse clinical
and laboratory backgrounds, this study emphasizes the
translational relevance of the LDSS over computational
complexity. Its explainable design—supported by SHAP analysis
and simplified scoring systems—enables non-technical users
to interpret outputs transparently. While technical details
were included to ensure methodological transparency and
reproducibility, the interpretability of the system fosters trust,
usability, and interdisciplinary communication between
laboratory specialists and treating physicians. By promoting
shared understanding of data-driven reasoning, the LDSS
supports faster decision-making, improved test stewardship,
and enhanced integration of laboratory insights into clinical
workflows.

LDSS

Although symptom data were unavailable in the laboratory
dataset, the LDSS was intentionally designed to function
within the routine workflow of laboratory medicine, where
test requests are frequently submitted without accompanying
clinical narratives. By aligning the model with real-world
laboratory constraints, the LDSS remains applicable and
scalable across diverse clinical settings.

To improve interpretability and minimize unnecessary
complexity, feature selection was applied to reduce the number
of inputvariables. Prior studies have consistently demonstrated
that parsimonious models are better suited for clinical
implementation, as they are easier to interpret and maintain,

29



Demirci et al.
LDSS for Reflective Urine Testing

Mediterr | Infect Microb Antimicrob
2026;15:17-33

while preserving acceptable predictive performancel*#2.
Accordingly, subsequent model development was restricted
to ten key parameters that did not result in a statistically or
clinically meaningful decline in performance. This strategy
ensured an optimal balance between model simplicity and
predictive accuracy.

Several published studies have similarly developed LDSS
frameworks based on urine culture data, including those
reported by de Vries et al.””, Dhanda et al.?%, Del Ben et al.3],
and Flores et al. Among these, Del Ben et al.®*l employed a
decision-tree-based approach, whereas the remaining studies
selected RF as the primary algorithm. The LDSS developed by
de Vries and colleagues demonstrated performance metrics
comparable to those observed in the present study, with AUC-
ROC values ranging from 0.70 to 0.80. Although their model
achieved a higher PPV, its NPV was lower than that of our
model, highlighting differences in clinical trade-offs between
false-positive and false-negative predictions.

Notably, Dhanda et al.?®! and Flores et al.? implemented
scoring systems that stratified patients into high- and low-
risk groups, an approach that is conceptually aligned with the
strategy adopted in the present study. Across key performance
metrics, the predictive accuracy of their models was broadly
comparable to that of our system.

What distinguishes our LDSS is the integration of three
distinct predictive models within a unified decision-making
framework. To our knowledge, this is the first study to report
the implementation of such a multi-model structure for UTI
prediction. This design enables clinicians and laboratory
physicians to select among alternative strategies according to
specific clinical priorities, such as maximizing case detection or
minimizing unnecessary diagnostic testing.

Although the SAFE-Score achieved excellent sensitivity, its
specificity was limited (approximately 20%), a trade-off that may
raise concerns regarding potential overtesting. Importantly,
the LDSS was intentionally designed to accommodate this
limitation by offering three complementary scoring strategies,
each reflecting a distinct clinical philosophy. These include
prioritization of patient safety (SAFE-Score), balanced diagnostic
performance (Dual Optimization), and strict adherence to
model-derived predictions (Model-Prioritized). Rather than
enforcing a one-size-fits-all solution, the LDSS functions as a
flexible framework that facilitates consensus-based decision-
making, allowing institutions to align model selection with
local clinical expectations and operational priorities.

Crucially, the proposed system is not static. By continuously
incorporating real-world data—particularly cases in which
algorithmic recommendations are compared with expert
laboratory physician judgments—the LDSS can be iteratively
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retrained and refined. As additional large-scale datasets are
accumulated over time, improvements in specificity and overall
diagnostic balance are anticipated, reflecting the inherent
capacity of ML models to evolve with expanding data inputs. In
this respect, the LDSS serves not only as an immediate decision-
support tool but also as a scalable platform for continuous
learning and performance optimization.

Within the Turkish healthcare context, reflective testing has
not yet been systematically implemented. Nevertheless, the
LDSS offers a structured and standardized framework that
may facilitate its adoption, reduce inappropriate urine culture
requests, and support antimicrobial stewardship initiatives.
Moreover, the Ministry of Health of Tirkiye has recently
introduced a “Rational Laboratory Utilization” directive that
explicitly promotes reflex and reflective testing practices [44]. This
regulatory emphasis is expected to accelerate the integration
of reflective testing into routine laboratory workflows,
highlighting the timeliness and practical relevance of the
proposed system.

Finally, the LDSS was designed for seamless integration into
routine clinical practice through Microsoft Excel, a widely
available and familiar platform in most healthcare settings. All
three predictive models are embedded within a single interface
and generate concurrent outputs, enabling direct comparison
and transparent interpretation at the point of use.

Due to time constraints, the validation cohort was relatively
small. Nevertheless, implementation of the LDSS within
our hospital’s central laboratory is planned, where it will
be deployed to support real-time microbiological decision-
making. This implementation will allow prospective validation
of the system within routine laboratory workflows, evaluation
of its diagnostic impact, and quantification of downstream
outcomes, including reductions in unnecessary urine
cultures, shorter turnaround times, and improved antibiotic
stewardship. In addition, future multicenter studies across
diverse healthcare systems are planned, incorporating
structured clinical variables such as symptomatology,
comorbidities, and medication history to further enhance the
model’s generalizability and clinical relevance.

Study Limitations

Although this study leveraged a large dataset and included
externalvalidation, several limitationsshould beacknowledged.
First, all data were derived from a single healthcare network,
which may limit generalizability to institutions with different
patient populations, laboratory infrastructures, or clinical
workflows. Second, the retrospective study design precluded
assessment of the LDSS in real-time clinical decision-making;
prospective implementation studies are therefore required to
determine its effects on clinical practice and patient outcomes.
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Third, the model relied exclusively on structured laboratory
data and did not incorporate patient symptoms, comorbidities,
medication history, or clinical notes—factors known to
influence UTI risk assessment and antibiotic prescribing.
In routine clinical care, integration of such information is
primarily the responsibility of the treating physician, who orders
diagnostic tests based on patient history, clinical presentation,
and prevailing guidelines. In contrast, laboratory physicians
are tasked with processing submitted specimens according to
standardized pre-analytical and analytical protocols. Although
pre-preanalytical factors, such as appropriate test selection, are
important, these data are rarely available to LIS in a structured,
analyzable format. Consequently, most LIS environments
contain only coded test orders and limited demographic
information, without access to patient symptomatology or
detailed clinical context.

Within these real-world constraints, the LDSS was designed not
asareplacement for clinical judgment butasa complementary,
interpretable decision-support tool that standardizes reflective
testing and promotes communication between laboratory
and clinical teams. Accordingly, the system functions as a
laboratory-based reflex testing prioritization tool rather than
as a diagnostic or therapeutic decision-making platform.

Fourth, despite robust performance in both internal and
external test sets, the relatively small independent validation
cohort—enriched for high-acuity inpatients—may introduce
spectrum bias and lead to overestimation of sensitivity in
complex clinical populations. Fifth, although the conventional
definition of significant bacteriuria is >10°> CFU/mL, this study
adopted a >10* CFU/mL threshold based on emerging clinical
evidence and institutional practice. Future investigations
should evaluate the effects of alternative thresholds on model
calibration and performance across different clinical settings.

Sixth, scoring weights and feature thresholds were calibrated
using a fixed probability cutoff and Youden’s index derived
from the present dataset. Optimal thresholds may vary across
institutions and will require local adjustment to maintain
the desired balance between sensitivity and specificity.
Finally, while SHAP values were employed to enhance model
interpretability, clinician acceptance, usability, and integration
into routine workflows were not formally assessed. Future
implementation studies are therefore essential to evaluate user
engagement, potential alert fatigue, and cost-effectiveness
prior to widespread clinical deployment.

We developed and preliminarily validated an interpretable,
multi-model LDSS designed to improve the efficiency of urine
culture utilization. By integrating ensemble MLapproacheswith

SHAP-based interpretability, the system demonstrated strong
discriminatory performance while offering flexible scoring
strategies that prioritize sensitivity, specificity, or an optimized
balance between the two. The LDSS has the potential to reduce
unnecessary urine cultures, support antimicrobial stewardship
efforts, and promote standardized, evidence-based laboratory
decision-making.

Future work will focus on prospective, real-world
implementation across diverse clinical settings. Planned
enhancements include integration with electronic health
record—derived clinical data, local calibration of decision
thresholds, and systematic evaluation of clinical impact, user
adoption, and cost-effectiveness. These steps are critical for
translating this early-stage model into a scalable and clinically
actionable decision-support tool.
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